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Abstract—This article presents control and learning algorithms
for a reaction wheel-based 3D inverted pendulum. The inverted
pendulum system has two main features: the ability to balance on
its edge or corner and to jump from lying flat to its corner by
suddenly braking its reaction wheels. Algorithms which address
both features are presented. For balancing, a backstepping based
controller providing global stability (almost everywhere) is derived,
together with a simple tuning method based on the analysis of
the resulting closed-loop system. For jump-up, a computationally
efficient, gradient-based learning algorithm is provided, which is
shown experimentally to converge to the correct angular velocities
enabling a successful jump-up. Moreover, a controller based on
feedback linearization is derived and used to track an ideal
trajectory during jump-up, increasing robustness and reliability.

I. INTRODUCTION

This article presents control and learning algorithms for a
reaction wheel-based 3D inverted pendulum. The inverted pen-
dulum system consists of three perpendicular reaction wheels
embedded in a cubic housing. Due to its relatively small
footprint, i.e. a side length of 150 mm, it is called Cubli, which
is derived from the Swiss German diminutive for cube. Figure 1
shows the Cubli balancing on a corner. Unlike other inverted
pendulum test beds, [2], [4], [S], [18], [19], [21], [22], and
references therein, it has the ability to jump-up from a resting
position without any external support by suddenly braking its
reaction wheels rotating at high angular velocities. While the
mechatronic design is covered in [7], and a linear controller is
discussed in [8], this paper presents nonlinear control strategies
and a learning algorithm enabling a successful jump-up.!

In [13] several design variants of a reaction wheel-based
3D inverted pendulum are compared. Moreover, a swing-up
control strategy is presented based on feedforward and linear
state feedback, for which local stability is shown. However, no
braking system is used, which has the drawback that the design
is not capable of swinging up from arbitrary positions, as the
electric motors provide only limited torques.

Based on a reduced system description two nonlinear con-
trollers are proposed herein. The first control design is based
on backstepping and provides a smooth, globally (almost ev-
erywhere) stabilizing control law characterized by four tuning
parameters. In contrast to earlier work, e.g. [3], [13], [16] the
full 3D case is treated and global stability is proved (almost
everywhere). The work presented in [15] is extended by relating
these parameters to the closed-loop behavior, leading to a simple
tuning strategy suitable for implementation.
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A video showing the Cubli can be found under https://www.youtube.com/
watch?v=n_6p-1J551Y.

The second control design is based on feedback linearization;
an appropriate state transformation is introduced allowing for
feedback linearization in the 3D case. This extends the result of
[20], where the 1D (planar) case is discussed.

Both controllers are implemented on the Cubli: The controller
based on backstepping is used for balancing. The controller
based on feedback linearization is used for tracking predefined
non-equilibrium motions; compared to other methods, such
as time-varying LQR control, feedback linearization has the
advantage of providing a time-invariant feedback law.

Additionally, a low-complexity model describing the jump-
up is derived. The model is used to apply a gradient-based
learning algorithm, similar to [12], to the Cubli and is shown
experimentally to converge. To enhance the reliability of the
jump-up, a predefined jump-up trajectory is tracked using the
controller based on feedback linearization.

The remainder of this article is structured as follows: The
dynamics are introduced in Section II, followed by the control
design in Section III. Aspects related to the jump-up are covered
in Section IV. Finally, experimental results are presented in
Section V, and the conclusions are summarized in Section VI.

Figure 1. The Cubli balancing on a corner.

II. DYNAMICS OF THE REACTION WHEEL-BASED 3D
INVERTED PENDULUM

In this section the reaction wheel-based 3D inverted pendulum
dynamics are briefly outlined. After introducing the notation, the
equations of motion are presented and are used to demonstrate
the conservation of angular momentum. As will be pointed out,
this has important consequences for control design. Addition-
ally, in the absence of motor torques energy is conserved. This



will become important in Section IV, where an ideal jump-up
trajectory is determined via the conservation of energy.

A. Notation

Let ©,,, i = 1,2,3 denote the moment of inertia of each
reaction wheel (in the direction of the corresponding rotation
axis, referred to the corresponding suspension point), and define
0, = diag(Oy1, Owa, Ops). Let Og + O, denote the total
moment of inertia of the Cubli around the pivot point O (see
Figure 2). Next, let 71 denote the position vector from the
pivot point to the center of gravity multiplied by the total mass
and g denote the gravity vector. The projection of a tensor
onto a particular coordinate frame is denoted by a preceding
superscript, i.e. X0y € R3*3| Kim € R3. The arrow notation is
used to emphasize that a vector (and tensor) should be a priori
thought of as a linear object in a normed vector space detached
from its coordinate representation in a particular coordinate
frame. The transformation matrix Rix € SO(3) relates vectors
from the body-fixed frame to their representation in the inertial
frame, that is 'v = RxXv, for all vectors Xv € R3. Moreover,
the skew symmetric matrix corresponding to a vector a € R3,
denoted by @, is defined as @ x b = ab, for all b € R3, where
a % b refers to the cross product of the two vectors a and b. The
Euclidean norm is referred as | - |, i.e. |a|> = a'a, and a || b
is used to indicate that the two vectors a € R? and b € R? are
parallel (that is a x b = 0). Additionally, the sphere of radius
lg| is denoted by S2.

Since the body-fixed coordinate frame {K} is the most
commonly projected coordinate frame, its preceding superscript
is usually removed for ease of notation. That is, Km = m,
K(“)O = O, etc.

Moreover, vectors are expressed as n-tuples (x1, 3, . .
with dimension and stacking clear from context.

. 7$n)

B. Equations of Motion

It was derived in [8] and [15] that the equations of motion
are given by

pwh = *‘:’hpwh + ﬁlga wa =T, RIK = RIK@m
Puy = Oown + O (Wh +Ww),  Puw, = Ouw(wh +ww),

(D

where w;, € R? denotes the angular velocity of the Cubli
housing, w,, € R3 the angular velocity of the reaction wheels,
and T' € R? the motor torque applied to the reaction wheels. The
fixed-body coordinate frame is aligned with the Cubli housing
and therefore the first component of w,, denotes the angular
velocity of the reaction wheel pointing in xéj direction, the
second component the reaction wheel pointing in x€s, etc. The
components of the motor torque 7" have a similar interpretation.

The following observations are worth pointing out: The
dynamics are invariant to the initial reaction wheel positions,
leading to the conservation of the angular momentum p,, in
the absence of motor torques. Moreover, the evolution of all
possible initial conditions over time? is symmetric around the

2Commonly referred to as the flow of the system.

gravity vector leading to the conservation of angular momentum
plh’g. This can be easily checked by explicit calculation:

% (L, 9) = PL, 9+ Ph, 0 = Ph,@ng — DL, @hg =0, (2)
where ¢ is expressed by § = Rjx'g = —Tpg, or by noting that
gravity exerts no torque in direction €3. The conservation of
the angular momentum g'p,, has an important consequence
for control design: Independent of the control input applied, the
momentum in direction § is conserved and, depending on the
initial condition, it may be impossible to bring the system to
rest. For example, a yaw motion in the upright position can be
slowed down by increasing the velocity of the reaction wheels.
However, the yaw motion and the reaction wheel velocity cannot
be driven to zero at the same time. Note that the conservation
of angular momentum in direction ¢ is independent of the mass
distribution or inertia of the Cubli and independent of the motor
torque 7.

In the presence of friction between the pivot point and
the ground, exerting a friction torque about €3, the angular
momentum plhg is no longer conserved, and as a result, a yaw
motion in the upright position will slowly decay.

In addition, in the absence of motor torques, the total energy
given by

1 1
H = §th@0wh+§ (wWh+we) O (wh+we) —mTg—|m| |g|,
(3)
is conserved. Due to the fact that p,, = O, (wn + wy) is
constant for T' = 0, the energy related to the Cubli housing,
given by

1
Hy, = gth@owh —m'g—|m| |g], 4

is conserved as well. Note that the energy is normalized such
that it attains zero for the upright equilibrium. The conservation
of energy will become important in Section IV, where it will
be used to derive an ideal jump-up trajectory.

Using the gravity vector expressed in the Cubli’s body-fixed
coordinate frame, i.e. ¢ = Rj'g, to represent the attitude, the
dynamics given by (1) can be reduced to

g = _a'}hgv
= Oy (wh + wWy)-
(5)
This comes however at the cost of losing the yaw information.

A formal treatment of this reduction step can, for example, be
found in [6].

pUJh, = _UNJthh, + mgv wa =T,
Dy, = @Owh —+ @w (U.)h + Ww)7 Puw,,

C. Equilibria

In this section the equilibria of the Cubli are briefly discussed.
The reduced equations of motion (5) give rise to equilibria
corresponding to limit cycles in the full configuration, so called
relative equilibria, [1].

The relative equilibria are obtained by setting the right-hand
side of (5) to zero, leading to

—LDhXﬁwh’—ﬁ—ng:Q T=0, —wp x g =0, (6)
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Figure 2. The Cubli balancing on its corner. The vectors g€; and 1€;, ¢ =
1,2, 3, denote the principle axes of the body fixed frame {K} and inertial frame
{I}. The pivot point O is the common origin of coordinate frames {I} and {K}.
For illustration purposes the coordinate system {I} is shifted to the left.

where g, P, , and @, denote the equilibrium configurations.
The last equation implies that &y, || g or likewise @y, = A3,
with A\; € R. Thus, the relative equilibria are characterized by

Wh = MG, MDw, +m =g, T =0, @)

with A\;, A2 € R, g € S2, and @y, P, , T € R3. The hanging
and upright equilibria, which are of interest for the remainder of
this article, are obtained by setting A\; = 0 implying g || m. As
expected, a linear analysis reveals that the upright equilibrium
is unstable, while the hanging equilibrium is marginally stable.

III. NONLINEAR CONTROL

In the next section two different control strategies are pre-
sented, which asymptotically stabilize the upright equilibrium.
The first approach is based on backstepping and provides a
smooth control law characterized by four tuning parameters.
In a subsequent step the tuning parameters are related to the
closed-loop behavior, extending the result presented in [15]. The
second approach is based on feedback linearization and extends
the result in [20] to the 3D case.

For the control design and subsequent analysis the reduced
dynamics (5) are used. The state space is chosen to be
(9, Py, Puwy) € X = 82 x R? x R3. By using the reduced
attitude representation, the feedback control laws derived next
will naturally be invariant to the orientation around the gravity
vector and to the reaction wheel positions.

Since the component of the angular momentum p,,, in the
direction of gravity is a conserved quantity, only the component
of p,, that is orthogonal to g can be affected by feedback
control. Hence, it is convenient to split the angular momentum
Dw, into two parts: one in the direction of gravity, and one
orthogonal to it, i.e.

9 T 9
g’ “ gl
The control objective consists of balancing the Cubli in the
upright position, and at the same time requiring wp, — 0

Doy = D5, + D%, ps, =p (8)

together with pj;h — 0 as time goes to infinity. Thus, the control
objective for balancing can be formulated as driving the system
to the closed invariant set

T = {(gvah’pww) S | ng = _|g| |m|’ 9)
P, =0, Duy = Du}-

Note that wy, is given by Oy *(pw, — Pw,,) and therefore p,,, =
Dw,, implies zero angular velocity of the Cubli housing.

A. Backstepping Approach

In the following section a nonlinear controller is presented,
which stabilizes the set 7 asymptotically. In a subsequent step
its closed-loop behavior is analyzed leading to a geometric
interpretation of closed-loop trajectories and a simple tuning
strategy.

For ease of notation, the hanging relative equilibria with wp, = 0
are denoted by =7, i.e.

N g
= ={(9,Pwn Pun) EX | g = ||m||m PS5, =0, Py = Pun, }-

Next, the control law
T = Kimg + Kowp, + Kap, — Kapo,, (10)
with
Ky =I+ (a+ By +0)Oo,
Ka =0y (apy, + BMgG) + Puy

99"
K4 :’YL aaﬁa756>07

and I € R3*3 the identity matrix, is shown to asymptotically
stabilize the upright equilibrium. More precisely:

Theorem 3.1: The controller (10) renders the closed invariant
set T of the system (5) stable and asymptotically stable on
reX\x .

Proof Consider the following Lyapunov candidate function V' :
X = R,
L7 1 T L ro-2
V(IE) = iapwh, pwh, +m g + ‘m‘ |g‘ + 2752 @O Z, (11)
with z := O (apih + Bﬁzg) + Py, — Py
Clearly, there exists a Ko, function® a : [0,00) — [0, 00)
such that V(z) > a(|z — x¢|) for all z € X and all zp € T.
Furthermore V(z = xo) = 0 implies = xg, where 2o € T.
Therefore V' is a positive definite function and a valid Lyapunov
candidate.
Next, V' is evaluated along trajectories of the closed-loop
system:
. 1
V(z) = ozpi‘:pi‘h +mTg+ SZT@EQé
T~

1 2.
m"g(aps, +wn) + SZT@O 2.

3A continuous function belongs to class Koo if it is strictly increasing and
radially unbounded, see e.g. [10, Definition 4.2, p. 144].



From the identity © 1y = ozpj,‘h + Bmg + wy, it follows that

. o 1 .
V(z) =m"g(Bgm + 0y 'z) + ngGEQz
~ ~ - 1

= —B(gm)" (gm) + 276y "mg + =

Moreover, the control input 7' can be rewritten as

To—2
z' 0y °z.

d .
T = £(z + Pu, ) + vz + 00¢mg.

Using the fact that p,,, = T, the closed loop evolution of the
auxiliary variable z is given by

(12)

Z = —vyz —00gmyg, (13)
which can be used to simplify V to
V(z) = —B(Gm)" (Gm) — %ZT@O_QZ <0, Ve X.

Since V(x) <0, for all z € X, we conclude from Lyapunov’s
stability theorem, [10, Theorem 4.8] that the equilibria xo € T
are stable.

To prove asymptotic stability of the set 7 for x € X \ ™,
the set

R:={zecX\z | V(z)=0} (14)

is considered in more detail. From V(z) < 0 for all z € X'\
(RUxz™) it can be inferred that any trajectory in X \ =~ is
converging to an invariant set contained in R. The condition
V(x) = 0 leads to z = 0, m parallel g, such that R can be
rewritten as R = {z € X\z~ | m | g, po, = @Oop3, +pw, }-
The dynamics on R can be simplified to:

m

gllm:9=—mlgl=>g=0
= wp || g because §g= —Wpg (15)
g |l m, zzOéwhzapjh
= wn || i, (16)

However, since pi;h is orthogonal to g by definition, equations
(15) and (16) imply wp = 0 and pj;h = 0. Therefore T is
the largest invariant set contained in R. This implies by the
Krasovskii—LaSalle principle [10, Theorem 4.4], that for any
trajectory x(t),

lim z(t) =z, z(0)e X \z~,

t—o0

CCfET.

1) Remarks:
a) Interpretation of the Lyapunov Function:
The Lyapunov function given by (11) can be found via a
backstepping approach, see for example [10] or [11] for an
introduction to backstepping. The reduced Lyapunov function
1T, L

1
Vi(z) = Sams, P, + m'g+|m| |gl,

which is independent of the momentum p,, can be used to
demonstrate stability given that p,,, = a©opg, + pu, + Bmg
(corresponding to z = 0). Therefore, z accounts for the momen-
tum p,,, and penalizes indirectly non-zero wheel velocities.

a7

b) Extension of the Controller:
In practice, modeling errors can cause steady-state deviations,
e.g. an erroneous estimate of the center of gravity leads to non-
vanishing steady-state reaction wheel velocities when balancing.
Integral control can be used to prevent these steady-state devi-
ations. Therefore the controller is extended with the state zjy,
1.e. U = u + vziy, Where

Zint(t) = 20 +/0 z(7)dr

and v > 0. In that case, closed-loop stability can be proved by
augmenting the Lyapunov function given by (11):
v -
Vi(z) =V (z) + %Zi}@o 2 2int-

In [15] an alternative approach to account for non-zero steady-
state wheel velocities is presented, which has the advantage of
directly providing an estimate of the center of gravity.

c) Interpretation of the Control Law:
Rewriting (10) yields

U = pwh + ’ypwh + a®0(pj)_h + fypj)_h)

0w (18)
+©om (B + (0 +78)9) = VPw.

where

¢
Do,y = U0 —|—/ u(T)dr. (19)
0

Therefore the controller given by (10) is a linear PID controller
in the variables pww,pj;h and g. The only nonlinearity of the
controller lies in the projection of p,, into pjh and p?, . Nev-
ertheless, the control law guarantees global asymptotic stability
(almost everywhere) as has been shown previously.

2) Closed-loop behavior: Due to its smoothness and its
dependence on only four tuning parameters, the controller
is well-suited for practical implementation. A simple tuning
strategy based on the closed-loop behavior is outlined next. We
will analyze the closed-loop response subject to two different
initial conditions, providing an interpretation of the tuning
parameters. In the first case, the Cubli will be released at rest,
but with a non-zero inclination angle. For this specific initial
condition the closed-loop dynamics of the inclination angle are
given by a third-order differential equation, which allows for
pole placement. It will be shown that there is a set of tuning
parameters matching every desired pole location (provided that
the desired poles have negative real parts). This determines three
of the four tuning parameters (o, 8 and 6). In the second case, a
pure yaw motion will be analyzed and related to the remaining
tuning parameter +y.

Proposition 3.2: Consider the controller (10) applied to the
system governed by (5) with initial conditions at £ = 0 such that
Puwy, (0) and wp, (0) are parallel to m x ¢g(0) # 0. Then it holds
for all ¢ > 0 that wp,(t), pw, (t), and m x g(t) remain parallel.

Proof Since p,,, (0) || m x g(0) it implies that p;, (¢) = pu,, (t)
for all ¢ > 0. Moreover, by combining the control law given by
(10) with the system dynamics it follows that

Wh = @(;l(pwh - T)
—(a+ By +d)m x g+ pm x (w, X g)
- 7(apwh + Wh)a (20)

= awp X Pwp,



together with

d
a(mxg):mx(gxwh).

Note also that from the Lagrange identity, [9],

Dy, = Dy, X Wp +m X g and
mx(gx(mxg)):—ngmxg 21

follows. Assume that py,, (t*), wp(t*), and m x g(t*) are
parallel at time ¢ = t*. Together with equations (20)-(21) these
assumptions imply that

L imx g(t)) | m x g(t*),

dt (22)
Wn(t) || m x g(t*), and 23)
Py, (£7) | m < g(t7). (24)

Hence, p., (t), wn(t), and m x g(t) will remain parallel for an
infinitesimal time increment dt, that is at time ¢ = t* + dt¢. By
induction, the vectors p,, (t), wn(t), and m x g(t) will therefore
remain parallel for all times ¢ > ¢*. Note that the right-hand side
of the closed-loop dynamics is locally Lipschitz, which implies
the local existence and uniqueness of closed-loop trajectories,
[17]. Since the initial conditions at t = 0 are such that p,,, (0),
wp(0), and m x g(0) are parallel, the result follows.

Note that the previous proposition applies especially in the case
where the Cubli is initialized with zero body angular velocity
and zero wheel velocity (wp,(0) = w,(0) = 0), and states that
the Cubli’s center of mass will never leave the plane normal to
m x g(0) for all times ¢ > 0. This sets the stage for deriving a
differential equation describing the inclination angle in closed-
loop provided that p,, , wp, and m X g are parallel at ¢ = 0.
It is convenient to introduce the unit vector

m x g(0)
€y i= ———+, where m x g(0) # 0, (25)
7 Imxyl
and define the inclination angle by
-
( 1= arccos < mg ) , (26)
Iml gl
with ¢ € [0, 7] for g € S2. Note that
sing = |7 9xml _ [m x| @7
Iml gl Iml gl

holds. By Proposition 3.2 it follows that wy, is parallel to m x g
and e, for all times ¢ > 0. Furthermore, from (26) and the
system dynamics (5) it can be confirmed that w;, = ¢e,.
Rewriting (20) yields
W = awp, X P, — (@ + By +dmx g
+ Bm x (wh % g) = v(Pw,, + wh)
= —ep(a+ By +0)Im]| |g]sine
— epBlm| |gl¢ cos o — y(apu, + €pP).
Taking the time derivative of the previous equation and using
the fact that é, = 0 and p.,, = e,|m| |g|sin ¢ results in
@+ (Blm] |g| cos o + )@ + (a+ By + ) |m| |g[pcos
—Bm| |g|@*sinp + yalm| |g|sinp = 0.
(29)

(28)

Linearizing (29) around the upright equilibrium, i.e. ¢ = 0
yields

@+ (BIm] lgl+7)¢ + (a+ By +0)m| |g]o+valm| [gle =0

(30)
and provides a method to relate the closed-loop poles to the
parameters {«,/3,7,0}. To simplify notation the following
scaling is introduced, & := a|m| [g[, 8 := Blm| [g|. ¥ = 7,
and ¢ := d|m]| |g|, such that (30) reads as

P+ (B+A)E+ (@+py+0)p+Aap=0. (3
Moreover, the parameter 7 is related to the closed-loop yaw
motion, by considering the case where the Cubli is initialized in
an upright relative equilibrium, with non-zero angular velocity,
wr(0) # 0. Hence, it follows that wy(0) || pw, (0) || g(0) || m
and that the closed-loop dynamics read as

g = 07 pwh = 07 and pww = _PAY(pUJw - pwh)' (32)

This leads to the interpretation of 4 as a time constant prescrib-
ing how fast the yaw rotation is slowed down.

Ideally, the parameters &,B,‘y,g are chosen such that the
desired closed-loop poles of the inclination angle are matched
and that a prescribed time constant of the closed-loop yaw
motion is met. However, it turns out that depending on 4, this
might be impossible, i.e. for a fixed 4 > 0 it might be impossible
to obtain &, B, ’y,g such that the pole configuration is met, while
guaranteeing nonlinear closed-loop stability with the proposed
controller. This fact is illustrated in the following.

For given closed-loop pole locations of the inclination angle,
let the third order characteristic polynomial corresponding to
(31) be denoted by

3+ As>+Bs+C =0, (33)

where the coefficients { A, B, C'} are related to the pole locations
by a homeomorphism. Therefore it is sufficient to analyze
the fAunctiAon4 f: Ri — R?’,_ mapping the tuning parameters
{&, 3,4, 0} to the constants { A, B, C'}. According to the Routh-
Hurwitz criterion the poles have strictly negative parts if and
only if the conditions A > 0,B > 0,AB > C > 0 are
fulfilled, see e.g. [14]. Clearly, if d,B,'Ay,g > 0, it follows that
A>0,B>0,AB > C > 0, which corresponds to a stable
pole configuration (as expected, nonlinear closed-loop stability
implies linear closed-loop stability). The converse is not true;
for a fixed ¥ > 0 there might be no &,3,3 > 0, such that
the desired pole location is matched. This fact is illustrated by
expressing the level set of f(oLB,ﬁ/, 3) =(A,B,C) as

{(a, 3,4,6) € R*

(34)

Hence, given that A, B,C > 0 the condition d,Bﬁ,(S >0
reduces to

A>4>0, h(F):=4-A¥*+B5¥-C>0. (35

“The positive real numbers are denoted by Ry := {x € R|z > 0}.
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Figure 3. Example for a desired
pole configuration with three real
poles. The admissible regions for 4
are denoted by ~,-1 and y,2.

Figure 4. Example for a desired
pole configuration with one com-
plex pole pair. The admissible re-
gion for 4 is denoted by ~,3.

Note that h(—s) = —(s3+ As?+ Bs+C') holds, which implies
that the zeros of h(¥) are just the negative values of the desired
poles. Thus, if the desired pole locations, sg, s1, and so, with
S9 < 81 < 89 < 0, are all real and distinct, then there are two
different 4-regions, e.g. ¥ € (—sg, —$1), ¥ € (—s2, A), where
h(%) > 0, see Fig. 3. If there are two complex conjugated poles
or non-distinct poles then there might be only one 4-region,
where h(¥) > 0, see Fig. 4.

Note that in all cases 4 needs to be greater than
min; {—real(s;)}, where sg, s1, s are the desired pole locations.
Hence, the closed-loop yaw motion needs to have a time
constant at least as fast as the smallest pole of the (closed-
loop) inclination angle dynamics, in order to guarantee global
closed-loop stability with the proposed controller.

Summarizing, the following tuning recipe is proposed:

1) Choose the desired pole locations of the closed-loop incli-
nation angle dynamics, which determines possible intervals
for 4.

2) Choose 4 within those intervals such that the time constant
of the yaw-dynamics matches the desired one as close as
possible. Solving (34) yields the parameters {&, 3,9,0}.

B. Feedback Linearization

Next an explicit input-to-state feedback linearization is found
extending the result presented in [20]. The generalized momen-
tum p,,, is chosen to be the virtual output. However, to remove
the conserved component (in direction §), it is convenient to
project p,,, in the inertial frame, where the dynamics of the

Cubli are given by
Ui =Twy x 'm,

L. _1

pwh -

Ipww =174 Iwh X Ipww.

mxlg, (36)

The virtual output y is formed by the first two elements of Ipwh,
ie.
Y= (Ipwhh Ipw;LQ) ) (37)

since the third component of !p , 18 conserved. This choice can
be motivated by the feedback linearization of the 1D reaction

wheel-based inverted pendulum presented in [20]. Using the

matrices
0 1 1 0 0
S o) ma p=(5 ) 0). e

J:<

the first two components of the cross product a x b with a € R3,

b € R3 can be expressed by
P(a x b) = —agJPb+ b3 J Pa. 39)

Thus, P('m x 'g) simplifies to P('m x 'g) = —|g|JP 'm.
Taking the time derivative of y, ¢, and ¢ leads to

y = —|g|JP 'm, (40)
ij = —lglTP('ws x 'm), 41)
Y = —|glJP('wn x 'm+Twy, x ). (42)
Additionally, 1wy, is given by
I- —1/ - .
wp = Rix© — Do
/ KOy (D), — Puwn,) 43)

= RIK@al(m X g — Wh X Puy, — T)

Solving for the input torque 7', i.e. using the change of variable
T — v with

T = —wp X P, +m X g—OgRj'v (44)

leads to 'w; = 'v. Using the identity given by (39) allows us
to rewrite (42) as

¥ =|g| "maP v —TvsP 'm — JP Ty, 'Tptm) . 45)
Choosing the first two components of v to be
1 1~ 1
Plv=—(vsP 'm+JP '@ '@p'm+ —w) (46

ImS

]

with w € R? leads to ¥ = w. Note that the transformation
is not defined for 'ms = 0. This parallels the 1D case, where
it was shown that a feedback linearization exists only for an
inclination angle ¢ such that p # +Z, see [20].

Hence, by choosing the state transformation

= (y,9,9, wn3), (47)

together with the input transformation given by (44) and (46)
the following linear system dynamics are obtained for the case

Imsg # 0:
O2x2  Iox2 O2x2  O2x1
.| O2x2 O2x2 Iax2 O2x1 O4x3 w
T Oaxa 0axz2 Oaxa 02s :c+< I3y3 ) ( Lyg )
O1x2 O1x2 O1x2 O
(48)
IV. Jump Up

By suddenly braking its reaction wheels spinning at high
angular velocities, the Cubli is able to “jump up” from lying
flat to its upright equilibrium as shown in Figure 5.

The jump-up is divided into two parts: the braking phase,
where the reaction wheels are almost instantaneously slowed
down and the guiding phase, where additional control action is

used to guide the Cubli to its upright equilibrium. Identifying



Figure 5. The Cubli jumping from lying flat to its upright equilibrium.

and modeling the braking phase exactly is difficult due to large
process uncertainties such as the friction between the brake and
the wheel, the timing of the different brakes and the inaccuracies
in the state estimation due to high accelerations. However, these
uncertainties are mostly time invariant and can therefore be
circumvented by using a low-order model in combination with
a learning algorithm. The learning algorithm accounts therefore
for the repeatable modeling errors, and is used to adapt the
initial wheel velocities of the reaction wheels.

To further improve the reliability of the jump-up, an ideal
trajectory is tracked during the guiding phase using feedback
linearization. Compared to a linear reference tracking approach,
this has the advantage of providing a time-invariant control law.

The next section is divided into the following parts. First, a
low-complexity model for the jump-up is outlined for both the
braking and the guiding phase. Then, the learning framework
is introduced and discussed in general, before being applied to
the Cubli jump-up.

A. Impact-based Braking Model

The jump-up is modeled by assuming that the reaction
wheels are stopped instantaneously. To simplify the analy-
sis further, it is assumed that after braking the angular mo-
mentum associated with the reaction wheels is zero, that is
P, (0)T = Oy (wr(0)T 4 wy(0)™) = 0. This assumption is
used to determine an ideal jump-up trajectory; it guarantees
the conservation of angular momentum around the figure axis
in the absence of control inputs, reducing the Cubli model
to a symmetric spherical pendulum (see Section IV-B). Note
that this assumption is not entirely fulfilled since in reality the
wheel speed w,,(0)" is actually zero after braking. Compared
to the reaction wheel momentum before braking, p,,, (0)" is
however negligible. The braking is assumed to happen at the
time instant 0; w,,(0)~ and w,,(0)" denote the left and right
limits of the reaction wheel angular velocity w,,. Note that the

left and right limits of a discontinuous function f (of locally
bounded variation) are defined by

J(0) o= lim £ (1 FO)* = lim £ (1),

The impact is modeled by using conservation of angular mo-
mentum. More formally, an impact torque density dA ([dA] =
Nms) is introduced and the equations of motion given by (5)
are integrated over the impact time singleton {0}. This yields

/ dpwh = Puwy, (0)+ — Puwp, (0)7
{0}

and (49)

(50)
= / (—Onpw, +mg)dt =0,
{0}

| s =0 O 0

0 (51)

= / (Tdt +dA) = A0)T — A(0)™,
{0}

where dp,,, and dp,,, are the differential measures of p,,, and
Dw,,» containing a density with respect to the Lebesgue measure
dt and the atomic measure dn, i.e.

dpu, = Pu,dt + (0, — p,, )dn,
dpu,, = Pu,dt + (pf, — 5, )dn.

The time singleton {0} has zero Lebesgue measure. By assump-
tion, it holds that O, (wy (0) T +wy, (0)") = p,, (0)T = 0. Since
the Cubli is at rest when activating the brakes, w,(0)~ = 0, and
therefore (50) yields

Puwy, (O)+ = eowh(0)+ = Pwy, (O)_ = @www(o)_a

which relates the body angular momentum after braking to the
initial wheel velocity.

(52)

(53)

B. Guiding Phase

During the guiding phase, the Cubli is guided along an “ideal”
trajectory to the upright equilibrium. The trajectory is tracked
using feedback linearization, resulting in a time-invariant control
law. Next, this predefined trajectory is derived by using first
integrals of the equations of motion.

To simplify the analysis, the following assumption is made:

Assumption 4.1: (Symmetric housing inertia) The inertia
tensor ©( has an eigenvector in direction m. The associated
eigenvalue is denoted by I3. The remaining two eigenvalues are
equal, i.e. I = Is.

In case T = 0 and p,, = 0, this assumption leads to an
additional conserved quantity, which is nothing but the angular
momentum around the figure axis, i.e.

d

It (mTpWh)

(54)
= mT&}h@()LUh + mT@thw =0,

where the first term of the previous expression vanishes due to
Assumption 4.1 and the second due to the fact that p,, = 0.
The “ideal” trajectory is defined as the trajectory leading from
the state just after braking, i.e. the right limit at time ¢ = 0,
to the upright equilibrium without using any motor torque. By



assumption, the right limit of p,,,, vanishes at time ¢ = 0, which
implies that p,,, (¢) remains zero for all ¢ > 0, see Section II
In the absence of motor torque, energy, the angular momentum
in direction ¢, and the angular momentum in direction m are
conserved (see (2), (4), and (54)), that is

1
Hp = iwg@owh —mTg — |m| |g| = const,

pw, pwh | | CO 9:7
i ) g

m T
D, =P, — = const.
Wh Wh m|

In other words, the Cubli is modeled as a symmetric spherical
pendulum during the guiding phase. It has as many first integrals
as degrees of freedom. This suggests to parametrize the attitude
of the Cubli by the inclination angle

T
1= arccos (mg> € [0, 7).
Iml |9l

Since the ideal trajectory is supposed to lead to the upright
equilibrium, with go = —ﬁ\gL Pun, = 0 and pg,, = 0 it
follows that pgh =0, pffh = 0, and H = 0 along the motion.
Thus, the angular momentum can only have a component
orthogonal to g and m, and is therefore simplified to

(56)

— pf
Puy, = pwh, etpa
where the unit vector e, is given by

mxg for

e¢:|mxg|’ m x g # 0. (57

From the condition that the ideal trajectory lies on the zero
energy surface it can be inferred that

(pap )2 — 2(ng — |m| ‘g|)
Wh

= 2L|m] g|(1 — cos ¢), (58)

To—1
69980 €y
with [, = e;@oew, which is constant. Due to a vanishing wheel
momentum p,,, = 0, it follows from w;, = O 1pwh and the
system dynamics that
(59)

1 ” .
Wh = TPl Ce = P o
1

Hence, along the ideal trajectory the Cubli follows the great
circle of S? passing through the upright equilibrium represented
by the north pole. The trajectory is implicitly parametrized by
(58), by prescribing the angular momentum as a function of the
inclination angle .

This “ideal” trajectory is tracked using the controller pre-
sented in Section III-B. To that extent the error y — ¥qes 1S
introduced, with y defined according to (37). From Section III-B
it can be inferred that

€ =Y —Yges = W— Yges := U1
I I I I (60)
Wh3 — Wh3g = U3 — Wh3g, = U2.
Using # = (e,é,¢,'wns — lwpa,, ), the error dynamics are
rewritten as
O2x2 Iax2 0Oax2  O2x1
.| O2x2 O2x2 Iax2 O2x1 O4x3 uy
T = T+ .
O2x2  O2x2 0O2x2  O2x1 I3x3 U
O1x2 O1x2 O1x2 O

(61)

Thus, a time-invariant state feedback controller, e.g. u =
(u1,u3) = Ka can be used to stabilize the error dynamics.
The controller gain K € R3*7 can be found by linear control
strategies such as a linear quadratic regulator approach or
pole placement. Once the virtual control inputs u; and wuy are
determined, the resulting input torque is calculated by solving
Iw and w3 for T'. This transformation, given by (44) and (46)
is bijective, except when the Cubli is inclined by 90 degrees.’

For tracking the ideal jump-up trajectory we impose that
"whse, = 0 and 'wps,, = 0 together with

Ydes = 11Pdes PRrxcey,

Yaes = |m| |g|sing PRrxe,,

fides = |m| |g| cos ¢ Paes PRrxcey,
Im||g]?

—7 sing (3cosp —2) PRrkey,,
1

. 2lm
Pdes ‘= \/| I| ol (1 —cos ).
1

The formulas are obtained by mere differentiation and using
(58), which prescribes the desired angular momentum as a
function of the inclination angle.

62
Ydes = ( )

C. Learning Algorithm

For adapting the initial wheel velocities w,,(0)~ a learning
algorithm is used. The Cubli therefore makes multiple jump
trials and evaluates the quality of each jump according to
predefined criteria. The initial wheel velocities are adjusted
using a model-based gradient descent method. In the next
section the learning framework is elaborated in more detail.

1) Gradient-based Learning: The learning strategy used can
be seen as a variation of the Newton procedure for finding the
roots of a differentiable function. It has recently been presented
and successfully implemented in [12].

The underlying process, e.g. the Cubli jump-up, is assumed
to be dependent on the parameter vector § € R”, which can be
adjusted, as well as the unknown parameters s € R%.% The goal
is to adjust the parameters 6 such that a certain error e € R™
vanishes. In the case of the Cubli jump-up, we would like to
adapt the initial wheel velocities w,,(0)~ such that the upright
equilibrium is reached without using additional control. The
dependence of the error on the parameters (6, s) is described
by the mapping F : RP x R? — R™. The error dimension m is
assumed to be smaller or equal than the number of parameters
p that can be adjusted (m < p).

A model based on nominal parameters sy is assumed to be
known, which predicts the error F (6, sg). Based on this model,
the parameters §° leading to a vanishing error E(6°,5¢) = 0
can be inferred, together with the gradient of F with respect
to 0, evaluated at 6° and sq. Still, the parameters of the real
system, s*, are unknown. By performing experiments, e.g. jump-
up attempts, we can access noisy measurements of the error,
E' = E(0,s*) + N%, where N’ are bounded disturbances,

STn practice, an inclination of 90 degrees can never occur.

As pointed out in [12] the vector of unknown parameters can be infinite
dimensional.



INY| < D, i =0,1,2,.... The goal is therefore to iteratively
find the zero of the function E(-, s*) for unknown parameters s*.
A natural solution is to use Newton’s method. However, since
the gradient of ' with respect to 6 is unknown for s = s*, the
model-based approximation is used instead.

This leads to the following, simple and computationally
efficient update rule for the parameters 6

t
9i+1 — 92 _ )\2 3£ Ei,

i=0,1,2,...,
99 |go .,

(63)

with ' € (0,2) a predefined sequence of step sizes, i =
0,1,2,..., and where T denotes the pseudoinverse.

2) Application to the Cubli: Next, the learning algorithm is
applied to the Cubli jump-up. By suddenly braking its reaction
wheels rotating at high speeds the Cubli is able to jump up
from lying flat to the edge-balancing position, from the edge-
balancing position to the corner balancing position, and from
lying flat to the corner balancing position. The analysis is
restricted to the face to the corner jump-up (initially lying flat,
jump-up to the corner), as the other cases can be treated in a
similar manner.

From the modeling in Section IV-A and IV-B it can be con-
cluded that the Cubli has essentially three degrees of freedom.
The analysis suggests further to split them into a rotation around
its center of mass 1, a rotation around the gravity vector g and
a rotation around the direction perpendicular to 7 and g. For
a successful jump-up, where the upright equilibrium is reached
with zero angular velocity, each degree of freedom must be
controlled. Therefore, the error is chosen to be composed of the
angular momentum in direction 17, the angular momentum in
direction g and the energy Hp, each of them evaluated at the
top point

po (tt)
pd, ()
Hp(te)

E(ww(0)7,s) =

The top point is defined as the time instant ¢ = ¢; at which the
Cubli has either reached the upright position

g(ts) = ——=g|

Iml

or has no angular momentum in direction m X ¢, i.e.
Puy, (t)T(m x g(t;)) = 0. The parameters to be adjusted are
the initial wheel velocities w,,(0)~ € R3, whereas the vector s
contains unknown system parameters, e.g. the inertia, the center
of mass, the parameters related to the brake properties, etc.
Clearly, the error vanishes only if the Cubli reaches the upright
equilibrium.

According to the model derived in Section IV-A and IV-B the
error components are all conserved quantities in the absence of
the input torque 7'. Hence

+ _ . m - _ T —
=l (0)7 =m Ouwy(0) 64)

and
Hu(t') = Hn(0)*
1
= §(W}L(O)+)T@O‘*’h(0)+ —mTg(0) — |m] |g]
1 _ _ _
= §(w1v(0) )T®w®0 1®www(0)

—mTg(0) — |m| |g|.

This implies that the gradient with respect to w,,(0)~ evaluated
for the model parameters sq yields

m' O,
LA (9(0)7)7O,, (66)
we (0)7 |, (ww(0)7)70,07 0,

The initial guess 0° = (w,,(0)7)° is calculated by requiring
the model-based error to vanish. This yields according to
Section IV-B

(wa(0)7)" = V21 |m] |g[(1 — cos po) €,(0),

m x g(0)

ep(0) = m,

(67)

with ¢q the inclination angle when the Cubli is lying on its
face.

3) Compensation for the Guiding Control Action: In the
previous section the error function evaluating the quality of a
jump-up trial has been introduced and its gradient based on
the jump-up model has been derived. Therefore the update rule
given by (63) can be applied to learn the initial wheel velocities,
which lead the Cubli to its upright equilibrium without any
control action.

In practice however, not every jump-up succeeds as the
process noise, e.g. the randomness in the braking mechanism
is too high. To increase the chances of a successful jump-up
the guiding controller introduced in Section IV-B is used. The
controller tries to maintain the Cubli on a successful jump-up
trajectory and is activated after releasing the brakes. Naturally,
the control effort of the guiding controller must be considered
when evaluating the error criterion E(6%,s*). In other words,
given the value E(6°,s*), the jump-up performance E’(6%,s*)
which would have been obtained if no additional control action
would have been applied needs to be determined. Since the error
E' is composed of conserved quantities (in the absence of motor
torque) it suffices to estimate their values shortly after braking,
which yields

Pl (k) — [y b, dt
P, (ti) .
Ha(te) — Jo" Hadt

Note, that the momentum around the g axis is constant, regard-
less of the motor torque. The time derivative of the momentum
around m is obtained from the reduced system dynamics, (5)
and is given by

E'(wy(0)7,5) = (68)

) m T
Pgh = W (—Wh X Puy,)-

Moreover the rate of change of the energy related to the Cubli
housing, H;,, can be calculated to be H;, = —wZT.



Clearly, if the jump-up is ideal (in the sense of Section IV-B),
no correction is applied and therefore £ and E’ agree. More-
over, the error E’ can be simplified to

E'(wy(0)7, ) = (p, (0) 7,08, ()7, Hi(0)F), (69
leading to the conclusion that the gradient of £’ with respect

to 6 is likewise given by the right hand side of (66) for s = sg.
The jump-up procedure is summarized by Algorithm 1.

Algorithm 1 Cubli Jump Up

1: procedure JUMPUP(Initial guess (w,,(0)7), Step sizes \*)

2 00 < (wy(0)7)°

3 1=0

4 while Not converged do

5: Set 0 to be the initial wheel velocities

6 Speed up wheels, brake and apply guiding controller

7 while Top point is not reached do

8 Approximate fot “pl dt and fot " H,dt by trape-
zoidal integration

9: end while

10: Calculate E’(6¢, s*) according to (68)

11: gitl g — NP oL " E’(6%,s*) according to
(63) o

12: 1 1+1

13: end while

14: end procedure

V. EXPERIMENTAL RESULTS

In the following section the experimental results are dis-
cussed. The control algorithms are implemented on a Cortex M4
processor with a sampling time of 20 ms, except for the guiding
controller, which runs at 10 ms. The algorithm presented in [21]
is used for state estimation. The state estimation exploits the fact
that there is a single pivot point being always at rest to derive a
computationally light-weight, nonlinear attitude estimator. It is
therefore “model free”, in the sense that the estimation is solely
based on a kinematic model and does not require knowledge of
the center of gravity nor the inertia.

A. Balancing Performance

For balancing, an additional offset-correction filter is imple-
mented, which accounts for modeling errors in the parameter
m. Details of the implementation can be found in [15]. The
controller parameters are tuned using the strategy presented in
Section III and are chosen to be @ = 15, § = 18, v = 12 and
§ = 10~°. This yields closed-loop poles of the inclination angle
located at —32.7 rad/s, —12.0 rad/s, and —0.86 rad/s and a time
constant for the yaw motion of 0.083 s. With those parameters a
root mean squared inclination angle error (at steady state) below
0.025° can be observed.

Disturbance rejection measurements are depicted in Figure
6 and 7. The disturbance was chosen to be 0.17 Nm and was
applied to a single wheel for 60 ms. After less than 1.8 s the
inclination angle reaches steady state. Note that the reaction
wheels are barely turning in steady state (the jitter visible in
Figure 7 is due to measurement noise).
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Figure 6. Disturbance rejection measurements. Depicted is the inclination angle
over time. Note the inclination angle is not measured directly but estimated using
the algorithm presented in [21].

B. Tracking Performance

Next, the tracking performance is evaluated. Simple state
feedback in the transformed error variable e is used, that is
u = Kz with x and u defined according to (61). The feedback
gain K is chosen such that the linearization of the controller
around the upright equilibrium agrees with the linearization of
the balancing controller.

Figure 8 shows the evolution of y. Note that according to
(40), 72 is proportional to 'm; and —g; to 'ms. Therefore the
graph can be interpreted as the time evolution of the center
of mass in the inertial frame. Although the center of mass is
initially away from the ideal trajectory, the tracking controller
manages to guide the Cubli back to the desired path. As soon
as the center of mass is close enough to the upright equilibrium,
i.e. reaches the region indicated by the dotted arc in Figure §,
the balancing controller takes over. Figure 9 shows the time
evolution of the controller states y, which is associated to the
momentum Ipwh and §j, which is proportional to 'wj, x 'm. The
reference trajectory is again depicted by the dashed curves. It
follows from Figure 9 that the generalized momentum Ipwh
is accurately tracked. The error in the second derivative g is
initially larger, but is decreased by the controller as time evolves.
However, a slight overshoot can be observed.

C. Learning Performance

The learning algorithm proposed in the previous section is
implemented for the face to corner jump. A constant step size
of A = 0.8 for all iterations ¢ = 0,1,2... is used. Figure 10
shows the evolution of the initial wheel speeds w,,, and wy,.
Due to the geometry of the Cubli, the third reaction wheel is
only slightly used to correct for a non-zero momentum pf, and
is therefore not depicted. The initial wheel speeds were chosen
to be around 100rad/s away from the angular velocities leading
to a successful jump-up. Hence, for the initial wheel speeds the
Cubli barely moves or falls on the opposite side. After around
5 trials, the error of the angular momentum p,,, (o) is small
enough such that the guiding controller can lead the Cubli to its
upright equilibrium. At this point the learning algorithm is only
compensating for the control action of the guiding controller
leading to small correction steps.
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Figure 7. Disturbance rejection measurements. Depicted are the reaction wheel
velocities over time, which are directly measured via a hall sensor. The different
colors correspond to the different elements of the vector wa,.
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Figure 8. Trajectory tracking: Depicted is the evolution of 31 and g2 together
with the ideal trajectory (dashed) for a successful jump-up. The black crosses
indicate the sampling instants. The starting points (right after braking) of the
ideal and actual trajectory are marked by black circles. The point (0, 0) denotes
the upright equilibrium. The area around the upright equilibrium separated by
the dotted circle arc represents the balancing region, i.e. the region where the
tracking controller is turned off and the balancing controller takes over.

VI. CONCLUSION

This article presents aspects related to the dynamics and
control of a reaction wheel-based 3D inverted pendulum. The
analysis of the equations of motion revealed the existence
of conserved quantities and relative equilibria, and allowed
to find a reduced description of the dynamics. In particular,
the reduced description was used for the control design. Two
different nonlinear control approaches were presented and sub-
sequently discussed. Finally, aspects related to the jump-up
were presented, where the effect of repeatable disturbances
was decreased by an iterative learning algorithm. To enhance
robustness, feedback linearization was used to guide the inverted
pendulum system to its upright equilibrium on a predefined
trajectory. All control and learning algorithms were evaluated
in experiments, which confirmed their effectiveness.

REFERENCES

[11 V.I. Arnold. Mathematical methods of classical mechanics.
1989.

[2] K.J. Astrom and K. Furuta. Swinging up a pendulum by energy control.
Automatica, 36(2):287-295, 2000.

Springer,

11

Y1, Y2 [Js]

1, G2 [V/s]

|
200

|
150

|
100
t [ms]

Figure 9. Trajectory tracking: Depicted is the evolution of y and ¢ (solid),
where the crosses indicate the sampling instants. The ideal trajectories, Yges
and %jges are shown by the dashed curves.

—450 |- .
< 500 .
£
E
3 550 | .
—600 |- .
|

| | | |
400 450 500 550 600

Wyt [rad/s]

Figure 10. Depicted are the initial wheel speeds of the reaction wheels starting
from five different initial conditions. The learning algorithm converges after few
iterations to feasible wheel speeds resulting in a successful jump-up.

[3

[t

Bonagiri Bapiraju, K.N. Srinivas, P. Prem. Kumar, and Laxmidhar Behera.
On balancing control strategies for a reaction wheel pendulum. In Annual
IEEE India Conference, pages 199-204, 2004.

Dennis S. Bernstein, N. Harris McClamroch, and Anthony Bloch. De-
velopment of air spindle and triaxial air bearing testbeds for spacecraft
dynamics and control experiments. In American Control Conference, pages
3967-3972, 2001.

Daniel J. Block, Karl J. Astrom, and Mark W. Spong. The reaction wheel
pendulum, volume 1. Morgan & Claypool Publishers, 2007.

Nalin A. Chaturvedi, Taeyoung Lee, Melvin Leok, and N. Harris McClam-
roch. Nonlinear dynamics of the 3D pendulum. Journal of Nonlinear
Science, 21:3-32, 2011.

Mohanarajah Gajamohan, Michael Merz, Igor Thommen, and Raffaello
D’Andrea. The Cubli: A cube that can jump up and balance. In
International Conference on Intelligent Robots and Systems, pages 3722—
3727, 2012.

Mohanarajah Gajamohan, Michael Muehlebach, Tobias Widmer, and
Raffaello D’Andrea. The Cubli: A reaction wheel based 3D inverted

[4

[l

[5

=

[6

i}

[7

—

[8

—



(9]
[10]
[11]
[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

pendulum. In European Control Conference, 2013.

K. Itd. Encyclopedic dictionary of mathematics, volume 1. MIT press,
1993.

Hassan K. Khalil. Nonlinear Systems. Prentice Hall, Upper Saddle River,
New Jersey, 1996.

Miroslav Krstic, Ioannis Kanellakopoulos, and Petar Kokotovic. Nonlinear
and Adaptive Control Design. John Wiley & Sons, Inc., 1995.

Sergei Lupashin and Raffaello D’Andrea. Adaptive fast open-loop ma-
neuvers for quadrocopters. Autonomous Robots, 33:89-102, 2012.
Johannes Mayr, Franz Spanlang, and Hubert Gattringer. Mechatronic
design of a self-balancing three-dimensional inertia wheel pendulum.
Mechatronics, 2015.

Leonard Meirovitch. Methods of analytical dynamics. Courier Dover
Publications, 2010.

Michael Muehlebach, Mohanarajah Gajamohan, and Raffaello D’ Andrea.
Nonlinear analysis and control of a reaction wheel-based 3D inverted
pendulum. In Conference on Decision and Control, pages 1283—-1288,
2013.

Reza Olfati-Saber. Global stabilization of a flat underactuated system: the
inertia wheel pendulum. In Conference on Decision and Control, 2001.
Florian Scheck. Mechanics: From Newton’s laws to deterministic chaos.
Springer, 2010.

Jinglai Shen, Amit K. Sanyal, Nalin A. Chaturvedi, Dennis Bernstein,
and Harris McClamroch. Dynamics and control of a 3D pendulum. In
Conference on Decision and Control, pages 323-328, 2004.

Mark W. Spong and Daniel J. Block. The pendubot: A mechatronic
system for control research and education. In Conference on Decision
and Control, pages 555-556, 1995.

Mark W. Spong, Peter Corke, and Rogelio Lozano. Nonlinear control of
the reaction wheel pendulum. Automatica, 37:1845-1851, 2001.
Sebastian Trimpe and Raffaello D’Andrea. Accelerometer-based tilt
estimation of a rigid body with only rotational degrees of freedom. In
International Conference on Robotics and Automation, pages 2630-2636,
2010.

Wei Zhong and Helmut Rock. Energy and passivity based control of
the double inverted pendulum on a cart. In International Conference on
Control Applications, pages 896-901, 2001.

12



