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Abstract— This paper presents the nonlinear analysis and
control design of the Cubli, a reaction wheel-based 3D inverted
pendulum. Using the concept of generalized momenta, the key
properties of a reaction wheel-based 3D inverted pendulum are
compared to the properties of a 1D case in order to come
up with a relatively simple and intuitive nonlinear controller.
Finally, the proposed controller is implemented on the Cubli,
and the experimental results are presented.

I. INTRODUCTION

This paper presents the nonlinear analysis and control
of the Cubli shown in Figure 1. The Cubli is a cube of
150 mm side length with three reaction wheels mounted
orthogonally to each other. Compared to other 3D inverted
pendulum test beds [1] and [2], the Cubli has two unique
features. One is its relatively small footprint (hence the name
Cubli, which is derived from the Swiss German diminutive
for “cube”). The other feature is its ability to jump up from
a resting position without any external support, by suddenly
braking its reaction wheels rotating at high angular velocities.
While the concept of jumping up is covered in [3], and a
linear controller is presented in [4], this paper focuses on
the analysis of the nonlinear model and nonlinear control
strategies.

In contrary to the works presented in [5] and [6], this paper
approaches the controller design from a purely mechanical
point of view. Fundamental mechanical properties of the
Cubli are exploited to come up with simple and intuitive
derivations with physical insights ( [5]: 1D, reaction wheel,
feedback linearization; [6]: 3D, proof mass, linear controller,
local stability). The resulting smooth, asymptotically stable
control law provides a relatively simple tuning strategy based
on four intuitive parameters, thus making the control law
suitable for practical implementations.

The remainder of this paper is structured as follows: A
brief nonlinear analysis and control of the reaction wheel-
based 1D inverted pendulum is first presented in Section II.
Next, the nonlinear system dynamics is derived from first
principles in Section III, which is followed by a detailed anal-
ysis and control design in Sections IV and V, respectively.
Finally, experimental results are presented in Section VI and
conclusions are made in Section VII.

II. ANALYSIS AND CONTROL OF A 1D INVERTED
PENDULUM

This section presents the analysis and nonlinear control
strategy for a 1D reaction wheel-based inverted pendulum.
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Fig. 1. Cubli balancing on a corner. In the current version, the Cubli
(controller) must be initialized while holding the Cubli near the equilibrium

position.

Due to the similarity of some key properties in both the 1D
and 3D cases, this section sets the stage for the analysis of
the 3D inverted pendulum in the later sections.

A. Modelling

Fig. 2. A schematic diagram of a reaction wheel based 1D inverted
pendulum. This can be realized by putting the Cubli on one of its edges.

Let ¢ and 1 describe the positions of the 1D inverted
pendulum as shown in Figure 2. Next, let ©,, denote the
reaction wheel’s moment of inertia, O denote the system’s
total moment of inertia around the pivot point in the body



fixed coordinate frame, and my,; and [ represent the total
mass and distance between the pivot point to the center of
gravity of the whole system.

The Lagrangian [7] of the system is given by:
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L=356004" + 50u(@ +¢)* —mgeosp, (1)

where é)o = 09— 0, > 0, m = myl and g is the
constant gravitational acceleration. The generalized momenta
are defined by
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Let T' denote the torque applied to the reaction wheel by the
motor. Now, the equations of motion can be derived using
the Euler-Lagrange equations with the torque 7" as a non-
potential force. This yields
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Note that the introduction of the generalized momenta in (2)
and (3) leads to a simplified representation of the system,
where (4) resembles an inverted pendulum augmented by an
integrator in (5).

Since the actual position of the reaction wheel is not
of interest, we introduce = := (p,p,,py) to represent
the reduced set of states and describe the dynamics of the
mechanical system as follows:

@ 05 ' (e — y)
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B. Analysis

1) State Space: For the subsequent analysis the state
space is defined as X = {z | ¢ € (—7, 7], p, € R, py €
R}.

2) Equilibria: The equilibria of the system are given by
& ={(z,T) € X xR | f(z,T) = 0}. Evaluating p, =
Py = ¢ = 0 gives the following equilibria:

81:{(SC,T)€XXR|§O:O, Do = Py T:0}7 (7)
E={(x,T)e X xR |p=m, p, =py, T=0} (8

Each equilibrium is a closed invariant set with a constant
py which may be non-zero. Mechanically, this means that
the pendulum may be at rest in an upright position while
its reaction wheel rotates at a constant angular velocity.
Further linear analysis reveals that the upright equilibria &
is unstable, while the hanging equilibria & is stable in the
sense of Lyapunov.

C. Control Design
The goal of the controller is to drive the inverted pendulum
towards the upright position ¢ = 0 and to bring the angular
velocity of the reaction wheel v to zero, specifically
lim x = 0. )
t—o0

Now, consider the following feedback control law

u(p; g, py) = kimgsin g + kapy — kapy,  (10)
where
ki = 1—|—a(:)0+&+5,
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Theorem 2.1: The control law T = u(y, p,,py) given
in (10) makes the equilibrium point £ = 0 stable and
asymptotically stable on the domain X~ = X'\{¢ = 71,p, =
O,pw = O}.

Proof: Consider the following Lyapunov candidate
function V : x € X — R,

1 1
V(z) = —ap? + mg(1 — cos p) + ——22, an
() = gov + myl1 = cosi) + -
where z = z(z) = py(l + aéo) + Bsing — py.
There exists the class K,' function a(x) := ex?
with € < min{i’ﬁg,%,#} such that V(z) >

a(||(pg; ¢, 2)||2) Yz € X and ‘9'(0) = 0. Hence, V() is
positive definite and a valid Lyapunov candidate.
The time derivative of the above Lyapunov candidate

function along the closed loop trajectory is given by
- myg . . 1 .
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Since V(z) < 0 Vz € X, we conclude from Lyapunov’s
stability theorem that the point x = 0 is stable.

Now, to prove asymptotic stability of x = 0 in X', let us
define the set

R={zeX | V(z)=0}

Consider trajecories z(¢) inside an invariant set of R. Clearly,
they must fullfill ¢ = 0, z = 0 and the system dynamics (6).
This implies x(t) = 0 and therefore the largest invariant set
in R is x = 0. Now, by Krasovskii—LaSalle principle [9]
(Theorem 4.4) it follows that, for any trajectory z(t),

tlggo z(t) =0, z(0)eXx.
|

For a similar control design and stability proof of the 1D
reaction wheel-based inverted pendulum, see [10].

'A function a : R — Ra’ is of class Koo, if it is strictly increasing and
a(r =0) =0, limy o a(r) — oo, see [8].



D. Remarks

1) Interpretation of the Lyapunov function (11): The
Lyapunov function (11) can be found by a standard back-
stepping approach [9], [10]. If the reaction wheel dynamics
are neglected and p, is assumed to be the control input,
the function V(gp,p,) = 3ap? + mg(l — cosp) is a
valid Lyapunov function candidate. Requiring V<0 along
trajectories would imply py, = p,(1 + a®q) + Bsin g, ie.
z = 0. This leads to the interpretation that z penalizes the
deviation from the control law that would be applied to the
system when neglecting wheel dynamics. Hence, decreasing
the tuning parameter ¢ leads to a more aggressive controller
that prioritizes the tilt over the wheel velocity.

2) Extension of the controller (10): The Lyapunov func-
tion (11) can be augmented by an additional integrator state,

A~ 1% 2

V@) = V@) + 5t
where zin:(t) = z0 + fot z(T)dr. As a consequence, the
controller (10) must be extended with z;,,;, @ = u + VZips
in order to provide stability of the upright equilibrium. This
may also be important for practical implementation since it
accounts for modelling errors.

3) Interpretation of the control law (10): The control law

given in (10) can be rewritten as

B . ) .
U=;Em+%m¢+%1+mhm¢—ww

where .
Doy = U —l—/ u(T)dr.
0

This is nothing but a linear controller composed of a propor-
tional, (double) differential, and integral parts. Furthermore
~ can be interpreted as the integrator weight.

III. SYSTEM DYNAMICS OF THE REACTION
WHEEL-BASED 3D INVERTED PENDULUM

Let O denote the total moment of inertia of the full Cubli
around the pivot point O (see Figure 3), O,,;, i = 1,2,3
denote the moment of inertia of each reaction wheel (in
the direction of the corresponding rotation axis) and define
@w = diag(@wl, @wg, @wg), @0 = @0 — ®w~ Next, let m
denote the position vector from the pivot point to the center
of gravity multiplied by the total mass and ¢ denote the
gravity vector. The projection of a tensor onto a particular
coordinate frame is denoted by a preceding superscript, i.e.
Bey € R3*3, B(m) = Bm € R3. The arrow notation is
used to emphasize that a vector (and tensor) should be a
priori thought of as a linear object in a normed vector space
detached from its coordinate representation with respect to a
particular coordinate frame. Since the body fixed coordinate
frame {B} is the most commonly projected coordinate
frame, we usually remove its preceding superscript for the
sake of simplicity. Note further that © Oy = Oy € R3*3 is
positive definite.

Fig. 3. Cubli balancing on the corner. pex and res denote the principle
axis of the body fixed frame {B} and inertial frame {I}. The pivot point
O is the common origin of coordinate frames {/} and {B}.

The Lagrangian of the system is given by

1 A 1
L(wh, g, W, @) = ithG()wh + 5 (wh + ww)T

Ou(wh +wy) +mTg, (12)

where B(&),) = wy, € R? denotes the body angular velocity
and B(&,) = w, € R3 denotes the reaction wheel angular
velocity. The components of 7' € R? contain the torques as
applied to the reaction wheels. In the body fixed coordinate
frame, the vector m is constant whereas the time derivative
of g is given by Z(§) = 0 = g+wy x g = g+@ng. The tilde
operator applied to the vector v € R?, i.e © denotes the skew
symmetric matrix for which 9a = v x a holds Va € R3.
Introducing the generalized momenta

oc’”

Puw,, = = C_')Owh + C_')wwwv (13)
&uh
oc™
Puw,, = M = Gw(wh +w’w) (14)
results in the equations of motion given by

g = —wng, (15)
pwh = _a)hpwh + m% (16)
Pu, =T. a7

Note that there are several ways of deriving the equations
of motion; for example in [4] the concept of virtual power
has been used. A derivation using the Lagrangian formalism
is shown in the appendix > and highlights the similarities

2http://www.idsc.ethz.ch/Research_DAndrea/Cubli/
cubliCDCl3-appendix.pdf



between the 1D and 3D case. The Lagrangian formalism
also motivates the introduction of the generalized momenta.

Now, using 7= + wp X v, the time derivative of a
vector in a rotating coordinate frame, (15)-(17) can be further
simplified to

g=0, (18)
A (19)
Do, =T (20)

This highlights, in particular, the similarity between the
1D and 3D inverted pendula. Since the norm of a vector
is independent of its representation in a coordinate frame,
the 2-norm of the impulse change is given by ||p,, ||z =
[|m|]2]|g]|2 sin ¢. In this case, ¢ denotes the angle between
the vectors m and g. Additionally, as in the 1D case, p,,, is
the integral of the applied torque 7.

IV. ANALYSIS

A. Conservation of Angular Momentum

From (19) it follows that the rate of change of p,, lies
always orthogonal to 7 and ¢. Since ¢ is constant, p,, will
never change its component in direction § during the whole
trajectory. Expressed in Cubli’s body fixed coordinate frame,
it can be written as 2 (pl g) = 0 and this is nothing but the
conservation of angular momentum around the axis g.

This has a very important consequence for the control
design: Independent of the control input applied, the mo-
mentum around ¢ is conserved and, depending on the initial
condition, it may be impossible to bring the system to rest.

B. State Space

Since the subsequent analysis and control will be carried
out in the fixed body coordinate frame, the state space is
defined by the set X = {z = (g, puy, Pw,) € R? | [|9]]2 =
9.81}. Note that wj, = 05 (pu, — P, ).

C. Equilibria

The procedure is identical to the one presented in subsec-
tion II-B.2. As can be seen from (19), the condition p,,, =0
is fullfilled only if m || g, ie, g = iﬁﬂgﬂg. From
(20) it follows that p,,, = const, T = 0. Using (15) and
(16) leads to wy, = Oy ' (p,, — Pw,,) || g and p., || g, which
corresponds exactly to the conserved part of p,,, . Combining
everything together results in the following equilibria

& ={(z,T) € X xR | g"m = —||glla]|m]]2,
P | My 05 (P, = s, ) || m, T =0},
& ={(x,T) € X xR* | gTm = ||g[2|Im]]2,
Per, | €5 (e, = poy,) || my T =0},
Linearization reveals that the upright equilibria &; is unsta-

ble, while the hanging equilibria & is stable in the sense of
Lyapunov.

V. NONLINEAR CONTROL OF THE REACTION
WHEEL-BASED 3D INVERTED PENDULUM

Let us first define the control objective. Since the angular
momentum p,,, is conserved in the direction of g, the
controller may only bring the component of p,, that is
orthogonal to ¢ to zero. Hence it is convenient to split the
vector p,, into two parts: one in the direction of g, and one
orthogonal to it, i.e.

Q

P = Py + 0.5, and 5,5 = (5,,9)
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From (19) and the conservation of angular momentum, it
follows directly that
B(05) = Py + Bnpy, = 1g. 21)

Another reasonable addition to the control objective is
the asymptotic convergence of the angular velocity of the
Cubli, wp,, to zero. Consequently, the control objective can
be formulated as driving the system to the closed invariant
set T={z € X | g"m=—|lgll2|lmll2, wn = 05" (P, —
pww) =0, pi_h = 0}.

In order to prove asymptotic stability, the hanging equi-
librium must be excluded (as will become clear later). This
can be done by introducing the set XY~ = X'\ x~, where z~
denotes the hanging equilibrium with wjy = 0:

- gll2
T ={reX|g= gl m, Pt =0, Py = Pun, }-

[Im]l2

Next, consider the controller
u = Kimg + Kowp, + Kspy, — Kapw,,, (22)
where
K1 =(1+ By +8)I + aBy,
Kz =aO0p,;, + Big + pu,,

- 99"
K3 :7<I+ a@0<l - 2))
g1l
K4:71, Oé,ﬁ,’}/,(5>0,

and I € R3*3 is the identity matrix.

Theorem 5.1: The controller given in (22) makes the
closed invariant set 7 of the system defined by (18)-(20)
stable and asymptotically stable on x € X ~.

Proof: Consider the following Lyapunov candidate
function V : X — R,

Via) = gopt pat +mTg+ mllallglls + 52765,
. (23)
with z = z(z) = a@opwt + pw,, + g — Do, -
Then the K, function a(z) := ex?, with € <

2
a(|(Dyy s Pw» 2)||2), Vo € X. Furthermore V (z = ) = 0
implies * = xp, where xy € 7. Therefore V is a positive
definite function and a valid Lyapunov candidate.

min{%”m”z”g”z,m,ﬂ is such that V(z) >



Next, V is evaluated along trajectories of the closed loop
system:

. T, N P
Viz) = apwt pwt +mTg+ SZTGO 1

~ 1 ~
=mT50, 1 (Bgm + 2) + SzTGglz

= —3(Gm)" 65" (m) + 65" (mg + 52)

= —B(gm)T65 (gm) — %zTéalz <0,Vx e X.

Since V(z) < 0 Vz € X, we conclude from Lyapunov’s
stability theorem that the point xy € 7 is stable.

To prove aymptotic stability of the set 7 in X'~ define the
set R := {x € X~ | V(z) = 0}. The condition V() = 0
leads immediately to z = 0, m | g, such that R can be
rewritten as R = {z € X~ | m || g, pu,, = @Oop- +Duy, }-
Now, let us consider the system dynamics of a trajectory
inside an invariant set contained in R. This gives

m

g||m:>g=—m|\g||2=>g5=0
Swnllg g=—Wng (24)
g |l m, z:O:wh:apwi
= wy || per (25)

However, since pwt L g by definition, (24) and (25) imply
wp, = 0 and pwJ]: = 0. This shows that 7 is the largest
invariant subset of R. Now, by Krasovskii—LaSalle principle
[9] (Theorem 4.4), it follows that, for any trajectory z(t),

lim z(t) =z¢, x(0)e X,

t—o0

.%‘fET.

A. Remarks

1) Interpretation of the Lyapunov function (23): Similar
to the 1D case, the Lyapunov function (23) can be found via
a two-step backstepping approach. The reduced Lyapunov
function V() = %apwf;prt +mTg + ||m||2||g||2 can be
used to demonstrate stability for p,,, = aéopwt + Puwy, +
pmg, i.e. z = 0. Therefore z can again be interpreted as
penalty term, see Section II-D.

2) Extension of the controller (22): As in the 1D case, the
Lyapunov function (23) can be extended with an additional
state,
~ v

t
Viz) =V (x)+ T églzint, Zint () = zo+/ z(T)dr.
0

%Zint
Straightforward derivation shows that the resulting controller
must be augmented by 2., i.6. 4 = u + vz, Integral
control is useful in practice to prevent steady state deviations
caused by modelling errors.
B. Interpretation of the control law (22)

Rewriting (22) yields

U :pwh + 7pwh + aéo(pwj,: + rypwj;:)_F

m(Bg+ (6 +v8)9) — VPuw., (26)

where
t
Dus,, = U0 —|—/ u(7)dr.
0

Therefore the controller given in (22) is a linear PID con-
troller in the variables p,,,,, pw{; and g. The nonlinearity of
the controller lies in the projection of p,,, into pwt and p7, ,
and the computation of the g-vector from the quaternion
based position estimate. Now, for small inclination angles
of the body, the above nonlinear effects can be neglected to
give a linearized controller that has a similar performance to
the proposed nonlinear controller.

C. Offset-Correction Filter

Although the Cubli is stabilized in upright position, the
desired equilibrium (z € 7)) may not be reached in practice.
This is due to modelling errors, Am of the parameter m.
Denote m = m + Am, the wrong estimate of the parameter
m. Since the Cubli cannot reach an equilibrium position
other than m || g (see Section IV-C), the modelling errors
can be reduced by projecting 7 on g. This adaptation can be
made iteratively, but must be carried out very slowly, in order
to keep the upright equilibrium stable. Since the controller
is implemented in discrete time, this leads to the following
heuristic algorithm:

ho = M, 27
AT
N mpg g N
Miy1 = [ + (1 — p)rg, (28)
" lgll2 [1gll2
. R [0k |2
- mklla 29
Mi41 = M1 sa o (29)

where p (@ < 1) represents the time constant of the
adaptation. Note that (29) is required to ensure that the
magnitude of 7 is not affected.

VI. EXPERIMENTAL RESULTS

This section presents disturbance rejection measurements
of the proposed controller. The controller given in (22) is
implemented on the Cubli with a sampling time of T, =50
ms along with the algorithm proposed in [2] for state
estimation.

Figures 4 and 5 show disturbance rejection plots of the
proposed controller. A disturbance of roughly 0.1 Nm was
applied for 60 ms on each of the reaction wheels simul-
taneously. The control input shown in Figure 6, where the
controller reaches the steady state control input in less than
0.3 s. Finally, the controller attained a root mean square
(RMS) inclination error of less than 0.025° at steady state.For
small inclination angles, the linearized counterpart of the
proposed controller also gave a similar performance. Note
that the experimental setup did not allow large inclinations
due to the saturation of the motor torques (80 [mNm]).
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Fig. 4.  Disturbance rejection measurement. Depicted is the resulting
inclination angle of the nonlinear controller. In this case an asymetric
disturbance of roughly 0.1[Nm] is applied simultaneously on two reaction
wheels.

body angular velocity [rad]

05 I I I I I I I I I
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

time [s]

Fig. 5. Disturbance rejection measurement. Depicted is the resulting body
angle velocity, wy, of the nonlinear controller. The different colors depict
the different vector components of wy,. In this case an asymetric disturbance
of roughly 0.1[Nm] is applied simultaneously on two reaction wheels.

VII. CONCLUSION

This paper represents a further step in the development of
the Cubli: a 3D inverted pendulum with a relatively small
footprint. By using the concept of generalized momenta, the
dynamics of the reaction wheel-based 3D inverted pendulum
were put in relation to the 1D case. The key properties of
the pendulum system were analyzed and a controller was
proposed, which was shown to asymptotically stabilize the
upright equilibrium. Finally, the controller was implemented
on the Cubli, tuned using its intuitive parameters, and its
performance was evaluated.
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