
An Experimental Demonstration of a

Distributed and Event-Based State

Estimation Algorithm ?

Sebastian Trimpe ∗ Raffaello D’Andrea ∗

∗ Institute for Dynamic Systems and Control (IDSC), ETH Zurich,
Sonneggstr. 3, 8092 Zurich, Switzerland (e-mail: strimpe@ethz.ch,

rdandrea@ethz.ch).

Abstract: A distributed state estimation algorithm that makes use of model-based predictions
to reduce communication requirements in a networked control architecture is tested on an
unstable system. A cube balancing on one of its edges serves as the test platform, and six rotating
bodies on the cube’s inner faces constitute the agents in the control network. Each agent carries
a computational unit, which runs estimation and control algorithms, and is associated with
local sensors and an actuator. Measurement data is shared among the agents over a broadcast
network. Each agent maintains two estimates of the system state: the first reflecting the common
knowledge in the network, and the second additionally including all local sensor information. An
agent’s sensor measurement is only broadcast if it deviates from the common estimate of that
measurement by more than a specified threshold. Experimental results show that the number
of communicated measurements required for stabilizing the system can be significantly reduced
with this event-based communication protocol.

Keywords: State estimation, Kalman filters, communication networks, distributed control,
discrete-event systems.

1. INTRODUCTION

In most traditional control systems, a communication
medium is dedicated exclusively to the exchange of data
between the plant and the controller. However, recent
developments in the area of networked control systems (see
Hespanha et al. [2007] for an overview) suggest a different
view and regard communication as a shared resource.
Multiple agents share a network and may exchange data
of various content, in addition to sensor data and control
commands of typical feedback control systems.

Viewing communication as a resource may also be useful
from an architectural point of view. On a system level, one
may distinguish between time-critical tasks (e.g. real-time
feedback control) and non-time-critical tasks (e.g. adapta-
tion). Clearly, sufficient resources (such as communication
bandwidth) must be allocated to the critical tasks in order
to maintain the operation of the system in times of need.
On average, however, the full capacity of the resource
is rarely exploited. In such cases, unused resources may
be reallocated to non-critical tasks, resulting in improved
system performance in the long run.

From control theory it is known that sensor feedback is
critical, for example, for stabilization of unstable systems,
disturbance rejection, and when dealing with uncertain-
ties. In other situations, a system may operate satisfacto-
rily open-loop, at least for limited time periods. In event-
based control, sensor feedback caused by certain events

? This work was partially funded by the Swiss National Science
Foundation (SNSF).

Fig. 1. The Balancing Cube is an example of a networked
control system: six rotating modules, each having
sensors, actuation, and computational unit, share
information over a network to balance the cube on
its edge.

(such as a measurement exceeding a threshold) is used
as an alternative to time-triggered sending (see Åström
[2008] and references therein). Lunze and Lehmann [2010]
use the deviation of the actual state from the trajectory of

Accepted final version. Appeared in Proc. of the 18th IFAC World Congress, 2011. (doi: 10.3182/20110828-6-IT-1002.00564)

the closed-loop system with continuous sensor feedback to
decide if an event should be triggered. Hence, the feedback
loop is closed only when required.

At a high level, a similar idea can be applied to reduce
the communication in networked control systems with
multiple agents, each associated with local sensors and
actuators. The agents may use a process model to make
predictions about all other agents’ sensor measurements.
Using the same model, each agent also makes predictions
about its own state or measurements. If the prediction of
its local data deviates significantly from the true data, the
local data is broadcast to all other agents, which can then
update their estimates. Communication schemes like these
(where, in order to reduce network traffic, sensor data is
not sent at every time step) are referred to as controlled
communication, cf. Hespanha et al. [2007]. The distributed
estimation algorithm of this paper falls into this class of
algorithms, which have previously been proposed by Yook
et al. [2002], Xu and Hespanha [2004, 2005].

The implementation of the method for distributed state
estimation in this work makes use of two independent
discrete-time Kalman filters: one uses the measurement
data that has been broadcast and is thus globally known
and identical for all agents, and the other additionally ex-
ploits all local measurements. Each agent bases its decision
to broadcast its local measurements on a comparison of
the actual measurement to the common estimate of the
system. Using this communication protocol, the Kalman
filters receive a varying number of measurements (includ-
ing none) at every time step.

A related problem for state estimation in networked con-
trol systems is considered in Sinopoli et al. [2004]. The au-
thors analyze Kalman filtering for the scenario where non-
delivery of measurement data results from packet drops
rather than a decision made by some agent on the network.
They model the arrival of a measurement as a binary
random variable that is independent of the process data
(states and measurements). In contrast, the delivery of
a measurement in the presented approach is purposefully
chosen to depend on past measurements.

The distributed estimators exploit the prediction capabil-
ities of the Kalman filter to compensate for the deliberate
non-communication of measurements. Zhang et al. [2001]
use a similar idea for a different purpose in that they ex-
ploit model-based predictions to compensate for network-
induced delays.

The Balancing Cube, a 1.2 m cube that can balance
autonomously on any of its edges or corners 1 (see Fig. 1),
serves as the platform for testing the distributed esti-
mation algorithm presented in this paper. Six rotating
modules located on each inner face of the cube enable the
cube to balance. The modules are self-contained units that
carry sensors, an actuator, a battery, and a computer. The
modules share information over a communication network.
Experiments demonstrate that the distributed estimation
algorithm combined with the event-based communication
protocol allows a significant reduction of the average num-
ber of communicated sensor measurements while keeping
the cube balanced.

1 Videos may be found online at http://www.cube.ethz.ch.

This paper is organized as follows: The distributed es-
timation algorithm with event-based communication is
presented in Sec. 2. An overview of the physical test bed
– the Balancing Cube – is given in Sec. 3, where the ex-
perimental results are also presented. The paper concludes
with remarks in Sec. 4.

2. STATE ESTIMATION ALGORITHM

Figure 2 shows the network control architecture considered
in this work. The block Algorithm represents a computa-
tional unit that runs the estimation and control algorithm
and also handles the communication with the other units.
Each unit is associated with local sensors (S) and actua-
tors (A). Hence, the algorithm determines the appropriate
commands for its actuator based on local sensor data,
as well as data possibly received from the network. The
combination of computational unit, sensor, and actuator
will be referred to as agent for the remainder of this paper.
The total number of agents is denoted by N .

The data unit that is sent over the network is a scalar
sensor measurement. We assume that data is broadcast
over the network; that is, if an agent sends a measure-
ment, then all other agents receive this measurement.
Furthermore, we take an abstract view of the network and
assume the communication to be ideal; that is, we assume
that the communication of measurements is instantaneous
and no data is lost. This may be partly ensured by low
level communication protocols. It is recognized however
that sending only scalar measurements may not always be
the best approach. For network protocols that require a
minimum data length, it may be more efficient to send
the full measurement vector. The method presented in the
following can readily be adapted to this scenario.

We consider the common setup of a linear stochastic
process given by a discrete-time state space model,

x(k) = Ax(k−1) +B u(k−1) + v(k−1) (1)

y(k) = C x(k) + w(k), (2)

where k is the time index; x(k), v(k) ∈ R
n; u(k) ∈ R

m;
y(k), w(k) ∈ R

p; and all matrices are of corresponding
dimensions. The process and measurement noise, v(k)
and w(k), are random variables with v(k) ∼ N (0, Q)
and w(k) ∼ N (0, R), where N (m,V) denotes a normally
distributed random variable with mean m and covariance
matrix V . All noise sources are assumed temporally inde-

Algorithm

Plant

. . .Algorithm Algorithm

S A S A S A

Network

Fig. 2. The considered networked control architecture:
the blocks A and S denote (possibly heterogeneous)
actuator and sensor units; the Algorithm block in-
cludes estimation and control algorithms as well as
the communication logic.

pendent; and R is assumed diagonal. The initial state x(0)
is also assumed to be normally distributed with known
mean x0 and covariance P0.

In the proposed setup, each agent maintains an estimate
of the full system state x(k), which is input to a state
feedback controller. Hence, the question of effective data
communication rests with the state estimator: the objec-
tive is to maintain an estimate of the full system state x(k)
on each agent with a limited exchange of data between the
agents. Two key issues will be addressed: (1) how to make
use of the varying sets of measurements that arrive at an
agent (receiver algorithm), and (2) how to decide if local
sensor data should be broadcast over the network (sender
algorithm).

Before addressing the distributed estimation problem with
these two points in Sec. 2.2 and 2.3, the standard results
for centralized state estimation (i.e. with access to the full
measurement vector y(k)) are presented in Sec. 2.1. The
centralized case will serve as a baseline for the distributed
estimation method.

2.1 Centralized estimation

It is well known that the optimal state estimator of the
system given by (1) and (2) is the time-varying Kalman
filter. It is optimal in the sense that it keeps track of the
entire conditional probability density of the system state
x(k) conditioned on all measurements and control inputs
up to time k (cf. Anderson and Moore [1979]). The Kalman
filter can be given in the following recursive form,

x̂(k|k−1) = Ax̂(k−1|k−1) +Bu(k−1) (3)

P (k|k−1) = AP (k−1|k−1)AT +Q (4)

K(k) = P (k|k−1)CT
(

CP (k|k−1)CT +R
)

−1
(5)

x̂(k|k) = x̂(k|k−1) +K(k)
(

y(k)− Cx̂(k|k−1)
)

(6)

P (k|k) =
(

I−K(k)C
)

P (k|k−1) (7)

where x̂(k|k−1) denotes the expected value of the state
x(k) given all measurements and inputs up to time k−1,
x̂(k|k) is the expected value of x(k) given all data up to
time k, and P (k|k−1) and P (k|k), respectively, are their
covariance matrices. The filter is initialized by x̂(0|0) = x0

and P (0|0) = P0. There are many different variants of the
Kalman filter; which implementation of the Kalman filter
is used does not matter for the method presented below.

For simplicity, static state feedback is considered,

u(k−1) = F x̂(k−1|k−1), (8)

where F denotes the matrix feedback gain. The exposition
of the proposed method can, however, be adapted to
controllers with states. Each agent is responsible for a
subset of the control input vector u(k). To ease the
exposition, an index denoting the elements of the vector is
not used unless otherwise noted.

It is assumed that both the Kalman state observer (3)–(7)
and the feedback controller (8) are designed such that the
given control objective is satisfied.

In a network with sufficient communication bandwidth, a
conceptually equivalent implementation of the centralized
Kalman filter (3)–(7) on the distributed control network
in Fig. 2 would be to communicate at every time step all

measurement data to all agents. Each agent can then sim-
ply run a copy of the estimator (3)–(7) and the controller
(8). With this design as a starting point, the objective is to
develop a distributed and event-driven estimation scheme
that utilizes less communication bandwidth on average,
but that may revert to the centralized design if required.

2.2 Distributed estimation: receiver algorithm

The receiver of agent i denotes the algorithm that uses all
information available at time k to compute an estimate of
the system state x(k). The counterpart in the event-driven
estimation scheme, i.e. the sender algorithm, is derived in
the next section. It should be noted, however, that both
the receiver and sender algorithms run on each agent in
parallel.

The following notation is used to distinguish the different
types of measurements that are available to agent i at time
k:

ȳi(k) ∈ R
p̄i local sensor data

ỹi(k) ∈ R
p̃i(k) data received over the network

yi(k) ∈ R
pi(k) all available data, yi(k) = (ỹi(k), ȳi(k)).

The dimension of ỹi(k) and hence yi(k) is time-varying
because of the varying and a-priori unknown number of
measurements received. In particular, p̃i(k) = 0 in the
case where no measurement is received at time k by agent
i.

The elements of the vectors ȳi(k), ỹi(k), and yi(k) are
subsets of the elements of the full measurement vector y(k)
in (2). Analogous notation is used to denote the output
matrices and the measurement noise,

ȳi(k) = C̄i x(k) + w̄i(k) (9)

ỹi(k) = C̃i(k)x(k) + w̃i(k) (10)

yi(k) = Ci(k)x(k) + wi(k), (11)

where C̄i, C̃i(k), Ci(k) are of appropriate dimensions, and

w̄i(k) ∼ N (0, R̄i), w̃i(k) ∼ N (0, R̃i(k)), and wi(k) ∼
N (0, Ri(k)). Note that the dimension of the matrices

C̃i(k), Ci(k), R̃i(k), and Ri(k) are time-varying due to
the varying dimension of the corresponding measurement
vector. This includes the case where C̃i(k) and R̃i(k)
have zero rows when no measurement is received. In
order to avoid special treatment of this case, the Kalman
filter equations below should be understood such that the
measurement update step is skipped if no measurement is
available.

A time-varying Kalman filter that determines an estimate
x̂i(k|k) of the system state x(k) on agent i, taking into
account all available measurements up to and including
time k, is designed analogously to the filter (3)–(7) for the
centralized case:

x̂i(k|k−1) = Ax̂i(k−1|k−1) +Bûi(k−1) (12)

Pi(k|k−1) = APi(k−1|k−1)AT +Q (13)

Ki(k) = Pi(k|k−1)CT
i (k)

·
(

Ci(k)Pi(k|k−1)CT
i (k) +Ri(k)

)

−1
(14)

x̂i(k|k) = x̂i(k|k−1) +Ki(k)
(

yi(k)− Ci(k)x̂i(k|k−1)
)

(15)

Pi(k|k) =
(

I−Ki(k)Ci(k)
)

Pi(k|k−1). (16)

To avoid misunderstanding, it should be reemphasized
here that the index i in x̂i(k|k) does not denote the i-th
element of x̂(k|k), but agent i’s state estimate. Similarly,
ûi, given by

ûi(k−1) = F x̂i(k−1|k−1), (17)

is agent i’s estimate of what the control input to the
whole system should be; in particular, agent i uses the
components corresponding to its actuator as actual control
commands.

We note that the distributed estimator (12)–(16) is the
same as its centralized counterpart (3)–(7) if all sensor
data is communicated.

2.3 Distributed estimation: sender algorithm

In the previous section, we assumed that each agent
receives a varying number of sensor measurements from
the other agents in the network. This section addresses
the sending decision: agent i’s sender algorithm determines
if the local sensor data ȳi(k) should be sent to all other
agents on the network.

Following the key idea discussed in the introduction, agent
i only sends its local measurements if it determines it is
necessary; that is, if the other agents’ expectation of the
measurement is significantly different. One way for agent
i to estimate the other agents knowledge is to construct
another state estimate x̌i(k|k) that uses only measure-
ments that have been broadcast to all agents. Hence, this
estimator reflects the knowledge that is common to all
agents. This requires that the local sensor data ȳi(k) is
only included in x̌i(k|k) if it is also broadcast to the
network. The estimate x̌i(k|k) is again obtained from a
Kalman filter,

x̌i(k|k−1) = Ax̌i(k−1|k−1) +Bǔi(k−1) (18)

P̌i(k|k−1) = AP̌i(k−1|k−1)AT +Q (19)

Ǩi(k) = P̌i(k|k−1) C̃T
i (k)

·
(

C̃i(k)P̌i(k|k−1)C̃T
i (k) + R̃i(k)

)

−1
(20)

x̌i(k|k) = x̌i(k|k−1) + Ǩi(k)
(

ỹi(k)− C̃i(k)x̌i(k|k−1)
)

(21)

P̌i(k|k) =
(

I−Ǩi(k)C̃i(k)
)

P̌i(k|k−1) (22)

with the corresponding estimate of the control input

ǔi(k−1) = F x̌i(k−1|k−1). (23)

The estimate x̌i(k|k) ensures consistency in the network,
since it is the same for all agents (whereas the estimate
from (12)–(16) is generally different).

With the common estimate x̌i(k|k), agent i can now esti-
mate what all other agents assume its measurement ȳi(k)
is: simply C̄ix̌i(k|k−1). This estimate can be used with
some communication logic to decide if ȳi(k) is broadcast.
Here, a simple threshold logic, applied for each element l
of the measurement vector individually, is used:

send ȳi,l(k) ⇔ |ȳi,l(k)− C̄i,l x̌i(k|k−1)| ≥ δi,l, (24)

where ȳi,l(k) denotes the l-th element of ȳi(k), C̄i,l the
l-th row of C̄i, and δi,l ∈ [0,∞) is a design parameter

capturing the tolerated deviation. Because of its impact
on the network communication, we hereafter refer to it as
the communication threshold.

Obviously, the choice δi,l = 0 means that the measurement
ȳi,l(k) is always sent; on the contrary, δi,l → ∞ corre-
sponds to never sending the measurement. Again, if all
sensor data is communicated, the distributed estimators
(12)–(16) and (18)–(22) yield the same estimates as the
centralized Kalman filter in (3)–(7). Thus, the perfor-
mance of the optimal state estimation can be recovered by
choosing all δi,l to zero. This turns out to be very handy
for practical implementation and tuning of the algorithm.

We remark that other communication logics are possible: a
condition involving a bound on P̌i(k|k−1) or a combination
of a condition on x̌i(k|k−1) and on P̌i(k|k−1) may be used
instead.

2.4 The complete algorithm

Both Kalman filters (12)–(16) and (18)–(22) run in parallel
on each agent. Using the condition (24) and the estimate
x̌i(k|k−1), agent i decides if its associated sensor data is
sent. For the purpose of computing the control input for
its actuator, the estimate x̂i(k|k) is used, since it makes
use of all information locally available.

A control loop step using the distributed estimation
method of Sec. 2.2 and 2.3 is summarized in Algorithm 1.

Algorithm 1 Control step on agent i, executed every time
step k.

apply component of ûi(k−1) to local actuator
acquire local measurement ȳi(k)
receive ỹi(k) from network (possibly empty)
compute estimate x̂i(k|k) from (12)–(16), (17)
compute estimate x̌i(k|k) from (18)–(22), (23)
for l = 1 to p̄i

if |ȳi,l(k)− C̄i,l x̌i(k|k−1)| ≥ δi,l
send ȳi,l(k)

end if

end for

compute control ûi(k) = F x̂i(k|k)

3. APPLICATION TO THE BALANCING CUBE

In this section, the effectiveness of the distributed estima-
tion algorithm is demonstrated on the Balancing Cube,
which represents an unstable system. Six agents are used
to stabilize the system. A brief system description is pro-
vided in Sec. 3.1. Even though a complete treatment is
beyond the scope of this paper, a brief explanation of the
modeling technique and the control design is provided.
Remarks on the implementation of the state estimation
method are given in Sec. 3.2 and experimental results are
presented in Sec. 3.3.

3.1 System description

The Balancing Cube is a multi-body system consisting of
a rigid body in the shape of a cube and six rotating bodies

(called modules) on the inner faces of the cube, see Fig. 3.
Each of the six faces of the cube is made of an X-shaped
aluminum structure (cf. Fig. 1 and 3); the edge length of
the cube is 1.2 m. The total mass of the cube is 21.4 kg
and the modules have a base mass of 3.7 kg. In the setup
presented here, three of the modules carry extra weights
adding up to a total mass of 5.8 kg.

Though the cube can balance on a corner (presented in
Trimpe and D’Andrea [2010]), for the purpose of this
study it balances on its edge as shown in Fig. 1 and 3. In
this configuration, the cube body has only one rotational
degree of freedom (the rotational axis is the edge the cube
is standing on), which results in a simpler dynamic model
and eases the exposition presented below.

The modules are actuated by a DC motor and rotate
relative to the cube structure. A drawing of a module with
its functional parts is shown in Fig. 4. When the modules
rotate, they exert reactional and gravitational forces (by
shifting the center of mass) on the cube structure. Each
module carries a single-board computer (SBC) that re-
ceives data from the sensors and sends commands to the
motor. The computers themselves are connected over a
Controller Area Network (CAN), whose wires run through
a slip ring and along the cube structure. The low level
CAN protocols allow each module to broadcast its local

Fig. 3. Rendering of the Balancing Cube, shown in the
same orientation as in Fig. 1. The cube has six
rotating modules, one on each face.

Battery

Computer
Absolute

encoder

DC motor

Bevel gear

Slip ring

(connection

to cube)

Fig. 4. Rendering of a module with its functional parts.
Not shown in this drawing is the inertial measurement
unit that sits in the part of the module that is
attached rigidly to the cube body.

measurements to all other modules on the network. All
components on a module are powered by a battery, which
allows for a normal balancing operation of around 4 hours.

The local sensors associated with each module are an
absolute encoder and an inertial measurement unit (IMU).
The absolute encoder measures the module’s angle relative
to its mounting. The IMU is rigidly mounted to the cube
structure (also connected to the SBC through the slip-
ring). It has a tri-axis accelerometer and tri-axis rate
gyro. For the demonstration of the estimation algorithm of
Sec. 2, only the absolute encoder and rate gyro measure-
ments were used. In fact, only one axis of the rate gyro is
relevant, namely the axis parallel to the axis of rotation.
Hence, each module has access to two local measurements
(p̄i = 2).

Since each computational unit is connected locally to
sensors and the actuator, and the computers share data
over a network, the cube architecture falls into the class of
systems considered in Sec. 2. The self-contained modules
on the cube play the role of the agents.

In order to stabilize the system about an equilibrium, a
cascaded control architecture is applied. On each motor,
a local velocity feedback loop operates at 1 kHz. This
inner loop tracks module angular velocity commands at
a faster rate than the natural dynamics of the cube. With
this architecture, nonlinear effects such as friction and
backlash in the actuation mechanism are mitigated from
the perspective of an outer loop (the full state feedback
controller in the form of (8)) which stabilizes the system.
The outer control loop is implemented at a frequency of
60 Hz.

Linear model and feedback controller. To obtain a model
of the Balancing Cube for the design of the state feedback
controller and the state estimator, the time-scale separa-
tion technique described in Trimpe and D’Andrea [2009] is
applied, where the inner velocity feedback loops are con-
sidered as (ideal) high gain feedback loops. The resulting
linear discrete-time model with sampling frequency of 60
Hz reads
[

xs(k)
xf(k)

]

=

[

Ass Asf

0 0

] [

xs(k−1)
xf(k−1)

]

+

[

Bs

I

]

u(k−1) (25)

y(k) = [Cs 0]

[

xs(k)
xf(k)

]

. (26)

The states 2 xf(k) are the angular velocities of the mod-
ules, u(k) their reference values, and xs(k) combines all
other states. Notice that the approximation of the inner
velocity loops as high gain feedback results in tracking of
the reference inputs in (25) in one time step, i.e. xf(k) =
u(k−1). It has been verified experimentally that this is a
valid approximation. All states and measurements of the
linear model are listed in Table 1. The matrices of the state
space model may be found in Appendix A.

Each module has access to an encoder and a gyro mea-
surement. For module i, ȳi,1(k) denotes the encoder and
ȳi,2(k) the gyro measurement at time k.

The state equation (25) is used to design a stabilizing LQR
feedback controller; the feedback law is

2 The index f corresponds to “fast” and s to “slow.”

u(k−1) = [Fs Ff]

[

xs(k−1)
xf(k−1)

]

. (27)

The feedback gain matrices Fs and Ff may also be found
in Appendix A.

For state estimation, the following reduced state-space
representation is used, which follows from (25), (26) with
added process and measurement noise,

xs(k) = Ass xs(k−1) +Bs u(k−1) +Asf u(k−2) + v(k−1)
(28)

y(k) = Cs xs(k) + w(k). (29)

The update equations for x̂(k|k − 1), x̂i(k|k − 1), and
x̌i(k|k−1) in (3), (12), and (18), respectively, are adapted
accordingly. The feedback law (27) becomes

u(k−1) = [Fs Ff]

[

xs(k−1)
u(k−2)

]

. (30)

Truth model. The truth model that is used for ex-
perimental comparison of the different state estimators
is based on the nonlinear state estimation method for
the Balancing Cube presented in Trimpe and D’Andrea
[2010], which is augmented with further non-causal post-
processing. To obtain the “true” state denoted by xtruth(k),
all sensor data (including, in particular, the accelerome-
ter data) is recorded and the state is obtained in post-
processing. The estimate of the cube tilt obtained from
this method has been verified with a camera-based motion
capture system (cf. results in Trimpe and D’Andrea [2010])
and has proven to work well on the cube.

3.2 Implementation of the state estimation algorithm

The noise parameters Q and R of the Kalman filter (3)–(7)
applied to the system given by (28) and (29) were treated
as tuning parameters to obtain satisfactory centralized
closed loop performance on the Balancing Cube. The
following parameters were chosen:

Q = diag ([1 1 1 1 1 1 0.01 1]) (31)

R = diag ([0.1 1 0.1 1 0.1 1 0.1 1 0.1 1 0.1 1]) . (32)

The Kalman filter was initialized with x0 = 0 and P0 =
Q/10.

Table 1. The states and utilized measurements
of the Balancing Cube. (Note that in this table
the indices denote elements of a vector; for

example, y1 is the first component of y.)

state physical meaning

xs,1 angle module 1
xs,2 angle module 2
xs,3 angle module 3
xs,4 angle module 4
xs,5 angle module 5
xs,6 angle module 6
xs,7 cube angle
xs,8 cube ang. vel.
xf,1 ang. vel. module 1
xf,2 ang. vel. module 2
xf,3 ang. vel. module 3
xf,4 ang. vel. module 4
xf,5 ang. vel. module 5
xf,6 ang. vel. module 6

meas. sensor

y1 encoder module 1
y2 rate gyro module 1
y3 encoder module 2
y4 rate gyro module 2
y5 encoder module 3
y6 rate gyro module 3
y7 encoder module 4
y8 rate gyro module 4
y9 encoder module 5
y10 rate gyro module 5
y11 encoder module 6
y12 rate gyro module 6

The same parameters were used for the distributed
Kalman filters (12)–(16) and (18)–(22). The only addi-
tional parameters that had to be chosen for the distributed
implementation are the communication thresholds: for all
agents i, they were set to δi,1 = 0.02 rad for the absolute
encoder measurements and, for the gyro measurements, to
about 2.5 times the standard deviation of the measurement
noise, that is, δi,2 = 0.01 rad/s.

3.3 Experimental results

Generally, it is expected that communicating less than all
data will affect the performance of the feedback control
system. If the communication thresholds δi,l are all zero,
then the performance is equivalent to implementing the
centralized state estimator (3)–(7). Below we define the
performance and communication measures used in this
work.

For evaluating the closed loop performance, a performance
index P is defined as the root-mean square (RMS) value
of the truth model state xtruth,

P :=

√

√

√

√

1

K

K
∑

k=1

(xtruth(k))Txtruth(k), (33)

for data of length K. For a system with state output
that is driven by white noise with unit variance, the RMS
value of the system state is equivalent to the H2 system
norm (see e.g. Skogestad and Postlethwaite [2005]), which
is a standard performance measure for stochastic control
systems.

In network control systems the communication rate is
commonly measured as the number of packets sent per
time interval, (cf. Xu and Hespanha [2005]). Similarly,
we consider the number of measurements sent per M
steps as a measure for the amount of communication. The
communication rate is computed as a moving average over
M steps, that is, for the measurement ȳi,l(k) (l denoting
the element of the vector, i the agent), we define

Ri,l(k) :=
number of ȳi,l(k) sent in [(k−M+1)Ts, kTs]

MTs

,

(34)
with the sampling time Ts = 1/60 s. The horizon is chosen
as M = 100. Furthermore, the time average R̄i,l of Ri,l(k)
and the average total rate R are defined by

R̄i,l :=
1

K

K
∑

k=1

Ri,l(k), R :=
1

N

N
∑

i=1

(

1

p̄i

p̄i
∑

l=1

R̄i,l

)

. (35)

The communication rates Ri,l(k), R̄i,l, and R all lie in
the interval [0, 1] by definition. In particular, R = 1
corresponds to the case where at each time step all data
is exchanged between the agents, while R = 0 means no
data is exchanged.

Experiment: steady-state balancing. The distributed es-
timation method from Sec. 2.2 and 2.3 was implemented
on the Balancing Cube in order to stabilize the cube about
the equilibrium configuration shown in Fig. 3.

Data was recorded over a period of five minutes of balanc-
ing. The obtained measures of performance and communi-
cation, P and R, are given in Table 2; they are compared

Table 2. Communication and performance
measures for centralized (eq. (3)–(7)) and dis-

tributed state estimation (Algorithm 1).

R P

centralized estimation 1.000 0.192
distributed estimation 0.060 0.285

Table 3. Average communication rates for the
encoder measurements (top row) and for the

gyro measurements (bottom row).

(i, l) (1, 1) (2, 1) (3, 1) (4, 1) (5, 1) (6, 1)

R̄i,l 0.0048 0.0137 0.0028 0.0014 0.0052 0.0011

(i, l) (1, 2) (2, 2) (3, 2) (4, 2) (5, 2) (6, 2)

R̄i,l 0.1059 0.1076 0.0913 0.1374 0.1157 0.1276

to a run with the centralized Kalman filter of Sec. 2.1.
The average communication rates for the distributed im-
plementation are listed in Table 3.

The expected trade-off between communication rate and
performance can be observed from these results: tolerating
a decrease of performance roughly by a factor of 1.5
compared to the centralized case allows a reduction in
communication events roughly by a factor of 16.

The communication rates for some of the absolute encoder
measurements are particularly low (significantly less than
1 %, cf. Table 3). Communicating the positions at every
time step is obviously not necessary, since this part of
the system can apparently be predicted very well from
the model. Still, this prediction needs to be updated
occasionally with an actual measurement.

For a 30-second sequence, module 1’s estimates of the
module angles 1 and 3, the cube angle, and the cube
angular velocity obtained by (12)–(16) and (18)–(22) are
shown in Fig. 5. They are compared to the truth model
state xtruth. The same module’s communication rates are
shown in Fig. 6.

4. CONCLUDING REMARKS

Experimental results demonstrate that the algorithm for
distributed state estimation presented in this paper is
an effective tool for reducing the average communication
rate in a networked control system. Moreover, it is a
straight-forward tool to implement. First, it is based on
the centralized design of the commonly used discrete-
time Kalman filter. Second, the communication threshold
parameters provide a practical handle for the designer
to parametrize the trade-off between communication and
estimator performance. In particular, the performance of
the centralized design can be recovered and hence used as
a starting point for fine-tuning the system performance.

A particularly useful feature of the algorithm presented
herein is that the bandwidth required for sensor feedback
is determined autonomously by the system, and need not
be known beforehand. This encompasses the possibility
that the average communication rates may vary for dif-
ferent types of sensors in the system. Furthermore, the
system can easily adapt to change in communication re-
quirements, using only the resources needed at any given
moment. One may, in fact, view centralized estimation as

A
n
gl
e
m
o
d
u
le

1
(r
ad

)
A
n
gl
e
m
o
d
u
le

3
(r
ad

)
C
u
b
e
an

gl
e
(r
ad

)
C
u
b
e
an

g.
ve
l.
(r
ad

/s
)

time (s)

0 5 10 15 20 25 30

0 5 10 15 20 25 30

0 5 10 15 20 25 30

0 5 10 15 20 25 30

-0.02

-0.01

0

0.01

0.02

-0.01

-0.005

0

0.005

0.01

-0.1

-0.05

0

0.05

0.1

-0.1

-0.05

0

0.05

0.1

Fig. 5. Agent 1’s state estimates x̌1 (blue) and x̂1 (green),
compared to the truth model state xtruth (red) for its
own module angle (top), agent 3’s module angle, the
cube angle, and the cube angular velocity (bottom).
The graphs x̂1 and xtruth are practically identical in
the top diagram.

the “fallback” system, in that it is simply the case where
all measurements are communicated.

A theoretical analysis of the presented distributed estima-
tion algorithm is beyond the scope this paper. Likewise,
further study of variants of the employed algorithm on
the Balancing Cube, such as making the sending decision
of a measurement also based on its associated estimation
variance, remain for future research.

ACKNOWLEDGEMENTS

The authors would like to thank Jan Lunze for stimulating
discussions leading to the initial idea of this work.

REFERENCES

B.D.O. Anderson and J.B. Moore. Optimal filtering.
Prentice-Hall, Englewood Cliffs, NJ, 1979.

K.J. Åström. Event based control. In Alessandro Astolfi
and Lorenzo Marconi, editors, Analysis and Design of

R
at
e
R

1
,1

R
at
e
R

1
,2

time (s)

0 5 10 15 20 25 30

0 5 10 15 20 25 30

0

0.05

0.1

0.15

0.2

0

0.05

0.1

0.15

0.2

Fig. 6. Agent 1’s communication rates for its encoder (top)
and rate gyro measurement (bottom).

Nonlinear Control Systems, pages 127–147. Springer
Berlin Heidelberg, 2008.

J.P. Hespanha, P. Naghshtabrizi, and Y. Xu. A survey of
recent results in networked control systems. Proceedings
of the IEEE, 95(1):138–162, January 2007.

J. Lunze and D. Lehmann. A state-feedback approach
to event-based control. Automatica, 46(1):211–215,
January 2010.

B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M.I.
Jordan, and S.S. Sastry. Kalman filtering with inter-
mittent observations. IEEE Transactions on Automatic
Control, 49(9):1453–1464, September 2004.

S. Skogestad and I. Postlethwaite. Multivariable Feedback
Control: Analysis and Design. Wiley-Interscience, 2nd
edition, November 2005.

S. Trimpe and R. D’Andrea. A limiting property of
the matrix exponential with application to multi-loop
control. In Proc. of the Joint 48th IEEE Conference
on Decision and Control and 28th Chinese Control
Conference, pages 6419–6425, Shanghai, P.R. China,
December 2009.

S. Trimpe and R. D’Andrea. Accelerometer-based tilt
estimation of a rigid body with only rotational degrees
of freedom. In Proc. of the IEEE International Con-
ference on Robotics and Automation, pages 2630–2636,
Anchorage, Alaska, USA, May 2010.

Y. Xu and J.P. Hespanha. Optimal communication logics
in networked control systems. In Proc. of the 43rd IEEE
Conference on Decision and Control, pages 3527–3532,
Atlantis, Bahamas, December 2004.

Y. Xu and J.P. Hespanha. Estimation under uncontrolled
and controlled communications in networked control
systems. In Proc. of the 44th IEEE Conference on Deci-
sion and Control and the European Control Conference,
pages 842–847, Seville, Spain, December 2005.

J.K. Yook, D.M. Tilbury, and N.R. Soparkar. Trading
computation for bandwidth: reducing communication
in distributed control systems using state estimators.
IEEE Transactions on Control Systems Technology, 10
(4):503–518, July 2002.

W. Zhang, M.S. Branicky, and S.M. Phillips. Stability
of networked control systems. IEEE Control Systems
Magazine, 21(1):84–99, February 2001.

Appendix A. STATE SPACE MODEL AND
FEEDBACK GAINS OF THE BALANCING CUBE

The matrices of the state space model of the Balancing
Cube in (25) and (26) and the static feedback gain matrices
in (27) are given here for completeness:

Ass =



















1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

a7,1 a7,2 a7,3 a7,4 a7,5 a7,6 a7,7 a7,8
a8,1 a8,2 a8,3 a8,4 a8,5 a8,6 a8,7 a8,8



















a7,1 = 2.8e-5 a7,2 = -5.6e-5 a7,3 = -2.8e-5 a7,4 = -2e-5

a7,5 = 2.8e-5 a7,6 = 2e-5 a7,7 = 1 a7,8 = 0.017

a8,1 = 0.0033 a8,2 = -0.0067 a8,3 = -0.0033 a8,4 = -0.0024

a8,5 = 0.0033 a8,6 = 0.0024 a8,7 = 0.15 a8,8 = 1

Asf =



















0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

ã7,1 ã7,2 ã7,3 ã7,4 ã7,5 ã7,6
ã8,1 ã8,2 ã8,3 ã8,4 ã8,5 ã8,6



















ã7,1 = 6.3e-5 ã7,2 = -0.00032 ã7,3 = -6.3e-5 ã7,4 = -0.00036

ã7,5 = 0.00018 ã7,6 = 0.00036 ã8,1 = 0.0038 ã8,2 = -0.019

ã8,3 = -0.0038 ã8,4 = -0.022 ã8,5 = 0.011 ã8,6 = 0.022

Bs =



















0.0167 0 0 0 0 0
0 0.0167 0 0 0 0
0 0 0.0167 0 0 0
0 0 0 0.0167 0 0
0 0 0 0 0.0167 0
0 0 0 0 0 0.0167

b7,1 b7,2 b7,3 b7,4 b7,5 b7,6
b8,1 b8,2 b8,3 b8,4 b8,5 b8,6



















b7,1 = -6.3e-5 b7,2 = 0.00032 b7,3 = 6.3e-5 b7,4 = 0.00036

b7,5 = -0.00018 b7,6 = -0.00036 b8,1 = -0.0038 b8,2 = 0.019

b8,3 = 0.0038 b8,4 = 0.022 b8,5 = -0.011 b8,6 = -0.022

CT
s =



















1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1 0 1 0 1



















Fs =












−0.175 0.246 0.121 0.106 −0.121 −0.106 −6.31 −2.07
0.295 −0.676 −0.295 −0.258 0.295 0.258 15.4 5.05
0.121 −0.246 −0.175 −0.106 0.121 0.106 6.31 2.07
−0.142 0.288 0.142 0.0165 −0.142 −0.124 −7.39 −2.43
−0.231 0.471 0.231 0.202 −0.339 −0.202 −12.1 −3.97
0.142 −0.288 −0.142 −0.124 0.142 0.0165 7.39 2.43













Ff =












0.916 0.0567 0.0215 0.0412 −0.0292 −0.0412
0.0524 0.794 −0.0524 −0.1 0.0713 0.1
0.0215 −0.0567 0.916 −0.0412 0.0292 0.0412
−0.0252 0.0664 0.0252 0.974 −0.0343 −0.0483
−0.0412 0.108 0.0412 0.0788 0.87 −0.0788
0.0252 −0.0664 −0.0252 −0.0483 0.0343 0.974













